Project Development \& Environment (PD\&E) Study

 For SR 9/l-95 @Northlake Boulevard/nterchange In Palm Beach County
Draft Noise Study Report

FM No: 435803-1-22-02
ETDM No: 14182

August 2017

Florida Department of Transportation | District IV
3400 West Commercial Boulevard | Fort Lauderdale, FL 33309

Draft Noise Study Report SR 9/I-95

 at
Northlake Boulevard Interchange

Palm Beach County, Florida

FM No: 435803-1-22-02 | ETDM No: 14182

Prepared for:

Florida Department of Transportation
District IV
3400 West Commercial Blvd.
Fort Lauderdale, FL33309
Prepared by:
Stanley Consultants Inc.
1641 Worthington Road, Suite 400
West Palm Beach, Florida 33409

August 2017

The environmental review, consultation, and other actions required by applicable federal environmental laws for this project are being, or have been, carried out by FDOT pursuant to 23 U.S.C. § 327 and a Memorandum of Understanding dated December 14, 2016 and executed by FHWA and FDOT.

Table of Contents

Executive Summary
Section 1
Introduction 1-1
1.1 Project Description. 1-1
1.2 Existing Conditions 1-2
1.3 Purpose and Need 1-7
1.3.1 Primary Criteria 1-7
1.3.1.1 Capacity/Transportation Demand: Improve Operational Capacity and Overall Traffic Operations (Level of Service) 1-7
1.3.1.2 Growth Management: Accommodate Future Growth and Development 1-8
1.3.2 Secondary Criteria 1-9
1.3.2.1 Safety: Improve Safety Conditions 1-9
1.3.2.2 Emergency Evacuation: Enhance Emergency Evacuation and Response Times1 1-9
1.3.3 Update to the ETDM Purpose and Need: Capacity/Transportation Demand 1-9
1.3.4 Update to the ETDM Consistency with Transportation Plan Goals and Objectives. 1 1-10
1.4 Proposed Improvements 1-11
1.4.1 2020 Opening Year (Short-Term) Improvements 1-11
1.4.2 2040 Design Year (Long-Term) Improvements 1-11
1.5 Recommended Modified Concept Alternative 1-12
1.6 No Build Alternative 1-13
1.7 Purpose of the Noise Study Report 1-13
Section 2
Methodology 2-1
2.1 Noise Model and Metrics 2-1
2.2 Traffic and Speed Data 2-2
2.3 Noise Abatement Criteria 2-3
2.4 Noise Abatement Measures 2-5
2.4.1 Traffic Management 2-5
2.4.2 Alignment Modifications 2-5
2.4.3 Buffer Zones 2-5
2.4.4 Noise Barriers 2-5
Section 3
Traffic Noise Analysis 3-1
3.1 Model Validation 3-1
3.2 Existing Noise and Predicted Noise Levels for Noise Sensitive Sites 3-2
3.3 Noise Abatement Analysis 3-4
3.3.1 Vancott Area Barrier Analysis 3-5
3.3.2 Sandtree Area Barrier Analysis. 3-6
3.3.3 Rochester Area Barrier Analysis 3-8
Section 4
Conclusions 4-1
Section 5
Construction Noise and Vibration. 5-1
Section 6
Community Coordination 6-1
Section 7
Noise Contours 7-1
Section 8
References 8-1
TABLES
Table 1-1 Utility Agencies 1-6
Table 1-2 ETDM Existing and Future Intersection LOS 1-8
Table 2-1 Typical Noise Levels 2-2
Table 2-2 TNM Traffic Data 2-3
Table 2-3 FHWA and FDOT Noise Abatement Criteria 2-4
Table 3-1 TNM Validation Results. 3-2
Table 3-2 Results of TNM Analysis at Category B Residential Receptors (66 dBA NAC). 3-3
Table 3-3 Results of TNM Analysis at Special Use Locations 3-4
Table 3-4 Locations of Evaluated 22 ft Noise Barrier or Extension* of Existing Noise Barrier. 3-5
Table 3-5 Calculated Noise Reduction Noise Barrier Extension Evaluated for the Vancott Area3 3-5
Table 3-6 Evaluation of the Proposed Vancott Noise Barrier at a Special Use Location 3-6
Table 3-7 Calculated Noise Reduction Noise Barrier Evaluated for the Sandtree Area. 3-7
Table 3-8 Evaluation of the Proposed Sandtree Noise Barrier at a Special Use Location 3-7
Table 3-9 Calculated Noise Reduction Noise Barrier Extension Evaluated for the Rochester Area3-8
Table 3-10 Evaluation of the Proposed Rochester Noise Barrier at a Special Use Location 3-9

FIGURES

Figure 1-1 Project Location Map...1-2
Figure 1-2 Existing Typical Section along I-95 Mainline ..1-3
Figure 1-3 Existing Typical Section along Northlake Boulevard..1-3
Figure 7-1 Noise Contours for Activity Categories B/C and E for the I-95 Mainline.................7-2
Figure 7-2 Noise Contours for Activity Categories B/C and E for Northlake Boulevard7-2

APPENDICES
Appendix A Traffic Data ...A-1
Appendix B Field Monitoring..B-1
Appendix C Conceptual Plans with Receptors ...C-1
Appendix D TNM Modeling Files...D-1

This Noise Study Report (NSR) is for the SR-9/I-95 at Northlake Boulevard Interchange Project Development \& Environment (PD\&E) Study and provides detailed analysis and results from the evaluation of the preliminary engineering concept of the recommended alternative for the proposed transportation improvements. Factors related to traffic noise and the adjacent noise sensitive receptors in the project area have been evaluated for the Existing Conditions, No-Build option and Alternative 1- Modified Concept. The study area includes I-95 at Northlake Boulevard interchange located in Palm Beach County, Florida. The I-95 proposed interchange improvements are located on Northlake Boulevard within the limits of Keating Drive to Sunrise Drive and on the I-95 mainline approximately 0.5 miles north and south of Northlake Boulevard. The Final Programming Summary Report was published May 2015 (14182).

The study evaluated the No-Build and the recommended Build alternative to determine if future noise levels approach or exceed the Federal Highway Administration (FHWA) Noise Abatement Criteria (NAC) at the noise sensitive sites. The noise analysis was performed according to procedures established in 23 CFR 772 and Part 2, Chapter 17 of the Florida Department of Transportation (FDOT) PD\&E Manual (version 7/27/2016). The prediction of future traffic noise levels was accomplished through the FHWA's Traffic Noise Model (TNM, version 2.5). Evaluation of future noise levels utilized forecasted traffic volumes for the 2040 design year. Future noise levels will increase whether or not the proposed improvements are constructed due to the expected increase in future traffic volumes.

For this study a total of 47 noise sensitive receptors were evaluated for traffic noise impacts associated with the proposed improvements. There were a total of 29 impacted Category B, C \& E NAC receptors for the proposed Alternative 1 - Modified Concept scenario. Three of these receptors are impacted in all of the scenarios evaluated, the Existing condition, the No Build and the proposed Alternative 1 - Modified Concept (i.e. Build).

There are four special use areas (Activity Categories C and E) in the project vicinity. These include a school, a playground, the outdoor seating area at Starbucks and the Inn of the America’s outdoor pool. The school and playground are Activity Category C (NAC of 66 dBA) and the remaining two are Activity Category E (NAC 71 dBA). For the special use areas, modeled exterior noise levels for the future Build (2040) scenarios determined impacts to NAC for Activity Category C and E special use sites.

Overall, there were three (3) impacted receptors for the Existing condition, three (3) impacted receptors for the No-Build option and 29 impacted receptors for the proposed improvements associated with the Alternative 1 - Modified Concept option. The range of increase in existing sound levels for Category B residential receptors for both the No-Build and the Alternative 1 Modified Concept are 0.7 to 7.8 dBA , respectively. The range of increase in existing sound levels for Category C and E special use receptors for both the No-Build and the Alternative 1 - Modified Concept are 0.9 to 5.2 dBA , respectively. TNM did not predict a substantial increase of noise levels (15 dBA) above existing conditions would occur at any location as a result of the proposed interchange improvements. Where there are impacts determined for noise sensitive receptors, abatement measures were evaluated.

Three residential areas (Activity Category B) are located adjacent to the study area where noise impacts were predicted. These are the Vancott, Sandtree and Rochester areas. The Vancott area is located in the northeast quadrant of the interchange; the Sandtree area is located in the southeast quadrant of the interchange; and the Rochester area is located in the northwest quadrant of the interchange. Modeled exterior noise levels for the recommended Alternative 1 - Modified Concept (2040) scenario predicted impacts to some of the Activity Category B (NAC of 66 dBA) at residences within the three areas. Therefore, abatement options were evaluated.

There are three existing 22 ft noise barriers located on I-95 on the northeast, northwest and southwest quadrants of the I-95 and Northlake Boulevard interchange. All three barriers evaluated were not found to be feasible since they did not fulfill the required noise reduction factors of 5 - 7 dBA. Further analysis for the impacted special use locations where evaluated by the Method to Determine Reasonableness and Feasibility of Noise Abatement at Special Use Locations. All three evaluated barriers were also found to be not be reasonable since they did not meet the required cost/benefit criteria. Therefore, no new noise barriers or barrier extensions are recommended for the proposed recommended Alternative 1 - Modified Concept.

1.1 Project Description

The Florida Department of Transportation (FDOT), District Four, is conducting a federally funded PD\&E Study, for the proposed interchange improvements at State Road 9 (I-95) at Northlake Boulevard located in Palm Beach County, Florida. The I-95 proposed interchange improvements are located on Northlake Boulevard within the limits of Keating Drive to Sunrise Drive and on I-95 approximately 0.5 miles north and south of Northlake Boulevard. The project boundaries are depicted in Figure 1-1 Project Location Map.

This interchange improvement is one of the seventeen interchanges studied as part of the I-95 Interchange Master Plan. This plan reexamined 1) the 2003 I-95 Interchange Master Plan Study and 2) the I-95 mainline project, which added a High Occupancy Vehicle (HOV) lane and auxiliary lanes from south of Linton Boulevard to north of PGA Boulevard in Palm Beach County and included minor improvements to eight interchanges. Overall, the I-95 Interchange Master Plan recommends new short-term and long-term improvements to interchanges based on changes in traffic volumes and updated design standards.

Figure 1-1 Project Location Map

1.2 Existing Conditions

The existing I-95 is currently a ten-lane divided interstate freeway from north of Blue Heron Boulevard interchange (southern limit) to north of the PGA Boulevard interchange (northern limit) providing four general purpose lanes and one High Occupancy Vehicle (HOV) lane in each direction.

The existing typical section for the I-95 mainline and Northlake Boulevard can be seen in Figure 1-2 and Figure 1-3.

Figure 1-2 Existing Typical Section along I-95 Mainline

Figure 1-3 Existing Typical Section along Northlake Boulevard

Auxiliary lanes are also provided in both the northbound and southbound directions between PGA Boulevard to the north and Blue Heron Boulevard to the south. North of Northlake Boulevard, I95 southbound provides one auxiliary lane between PGA Boulevard and Northlake Boulevard for a total of six southbound lanes. South of Northlake Boulevard, I-95 provides one auxiliary lane in each direction between Blue Heron Boulevard and Northlake Boulevard resulting in a twelve-lane section.

The existing right-of-way varies as it approaches the interchange, but the typical right-of-way ranges from approximately 300 to 725 ft . As part of the Strategic Intermodal System (SIS) and one of two major expressways (Florida's Turnpike being the other) that connect the major employment centers and residential areas of Miami-Dade, Broward and Palm Beach Counties, I-95 serves an important role in facilitating the north-south movement of traffic in Southeast Florida.

Under the jurisdiction of Palm Beach County, Northlake Boulevard is a six-lane divided urban other principal arterial. Northlake Boulevard at the I-95 overpass has dual left-turn lanes and a single right-turn lane in both the eastbound and westbound directions to access the I-95 on-ramps. The existing right-of-way varies from approximately 150 to 200 ft west of I-95 and 200 ft east of I-95. Sidewalks and designated bicycle lanes are provided along both sides of Northlake Boulevard within the area of influence.

The interchange at I-95 and Northlake Boulevard is a typical diamond configuration. Adjacent accessible signalized intersections relative to this interchange are located at Keating Drive (west) and Roan Lane and Sandtree Drive/Sunrise Drive (east). The interchange improvements (2040 Design Year Recommended Improvements) are likely to require additional right-of-way. Based on the FDOT's preliminary Long Range Estimate (LRE), the construction cost estimate for the improvements is estimated at approximately $\$ 26.3$ million. Detailed cost estimates and right-ofway requirements will be derived as part of the Project Development and Environment (PD\&E) Study.

The existing tight diamond interchange provides the following four ramps at Northlake Boulevard:

- Ramp A - southbound on-ramp
- Ramp B - northbound off-ramp
- Ramp C - northbound on-ramp
- Ramp D - southbound off-ramp

The northbound and southbound off-ramps provide two exit lanes from I-95 and transition into four-lane approaches at the ramp intersections with Northlake Boulevard. The four-lane off-ramp approaches consist of two left turn lanes and two channelized right-turn lanes, all under signal control.

The northbound on-ramp provides two receiving lanes at the Northlake Boulevard intersection that merge to one lane approximately 450 ft north of the intersection. The remaining on-ramp lane merges with I-95 approximately $1,000 \mathrm{ft}$ north of the gore area. The northbound on-ramp accommodates two receiving lanes for the eastbound Northlake Boulevard dual left-turn movement and a single, yield-controlled, channelized right-turn lane.

The southbound on-ramp accommodates two receiving lanes from the westbound Northlake Boulevard dual left-turn movement and a single free-flow channelized right-turn lane from eastbound Northlake Boulevard. The three lanes merge to two lanes prior to the gore area of the mainline of southbound I-95. The southbound on-ramp provides two lanes along the entire length of the ramp. The two lanes merge to one lane past the gore area with I-95 and the remaining ramp lane becomes an auxiliary lane between the Northlake Boulevard and the Blue Heron Boulevard interchanges.

Lane widths for the multilane ramps are 12 ft with 12 ft (10 ft paved) outside shoulders and 8 ft (4 ft paved) inside shoulders. The single lane ramp has a lane width of 15 ft with $6 \mathrm{ft}(4 \mathrm{ft}$ paved) outside shoulder width and 6 ft (2 ft paved) inside shoulder width. The design speed for all the ramps varies from 40 to 60 mph based on the final as-built plans from FM\# 231921-1.

The existing geometric elements for the I-95 mainline corridor, interchange ramps and bridge underpass as well as Northlake Boulevard from Keating Drive to Sandtree Drive/Sunrise Drive were obtained from the final as-built plans (FM\# 231921-1-52-01) available from FDOT District 4.

The existing typical section for the I-95 mainline and Northlake Boulevard can be seen in Figure 1-2 and Figure 1-3. There are six signalized intersections and two unsignalized intersections at full or restricted median openings along the Northlake Boulevard corridor within the study area. There are signalized intersections with the I-95 northbound and southbound ramps, SR 809/Military Trail and Keating Drive west of I-95 interchange as well as Roan Lane and Sandtree Drive/Sunrise Drive east of the I-95 interchange. The Northlake Boulevard study segment contains three full median openings and two partial median opening. The full median openings are located at Dania Drive, Keating Drive and Sandtree Drive/Sunrise Drive with the partial median openings at the Gardens Park Plaza and Roan Lane. The signalized intersection located at Roan Lane is a T-intersection that provides a protected left turn for eastbound vehicles to turn northbound. Southbound vehicles at Roan Lane can only make a right turn westbound.

Multi-modal facilities include pedestrian bicycle and transit. The segment of Northlake Boulevard within the study area includes 6 - ft continuous sidewalk separated from the curb and gutter by grass swales on the north and south side of the roadway. Pedestrian crosswalks are provided for all four approaches at the intersections of N Military Trail, and Sandtree Drive/Sunrise Drive. At the intersection with Roan Lane, pedestrian features are only provided on the north approach. Pedestrian crosswalks are provided for the north, west, and south approaches at the Keating Drive intersection. At the interchange intersections with I-95 north and southbound ramps, pedestrian crosswalks are only provided on the north and south approaches. No pedestrian facilities are provided on I-95 mainline or ramps.

Four foot bicycle lanes are provided on the east and west bound portions of Northlake Boulevard from Keating Drive to Sandtree Drive/Sunrise Drive. No bicycle facilities are provided on I-95 in the vicinity of the project area.

Northlake Boulevard, in the vicinity of the I-95 interchange has transit service provided by Palm Tran Route 20. This route serves transit riders along Northlake Boulevard from North Military Trail to Prosperity Farms Road. There is one stop eastbound at the Gardens Plaza East Entrance and two stops westbound at Keating Drive and Building 4301 West Entrance located west of the I-95

UTILITY	CONTACT	ADDRESS	PHONE NO.
Amerigas Propane	Paul Hugelmeyer	7171 Interpace Road West Palm Beach, FL 33407	$561-844-1775$
AT\&T Distribution	Garth Bedward	120 North K Street Room 3D-05 Lake Worth, FL 33460	$561-504-9263$
Comcast	Anthony Springsteel	10435 Ironwood Road Palm Beach Gardens, FL 33460	$561-454-5851$
FiberLight, LLC	Troy Gaeta	11700 Great Oakes Way Suite 100 Alpharetta, GA 30022	954-422-5618
Florida Public Utilities	Dale Butcher	209 N. Sapodilla Drive West Palm Beach, FL 33401	$561-366-1635$
FPL Distribution	Alan Boaz	810 Charlotte Avenue West Palm Beach, FL 33401	$561-616-1747$
FPL Transmission	George Beck	700 Universe Boulevard, Juno Beach, FL 33408	$561-904-3604$
FPL Fibernet, LLC	Danny Haskett	9250 W Flagler Street Miami, FL 33174	$305-552-2931$
Level 3 Communications	Michael Nunez	1025 El Dorado Boulevard Broomfield, CO 33637	$720-888-0916$
Palm Beach County Traffic Division	Rod Friedel	2300 Jog Road West Palm Beach, FL 33411	$561-681-4371$
Seacoast Utility Authority	Thomas Skoran, Jr.	4200 Hood Road Palm Beach Gardens, FL 33410	$561-627-2900$ Ext. 462
TECO Peoples Gas - Palm Beach	Max Chamorro	5101 NW 21 At Avenue, Suite 460, Fort Lauderdale, FL 33309	$954-453-0812$
Windstream Communications	Douglas Pickle	2301 Lucien Way Maitland, FL 32751	$407-835-0341$

interchange. East of the I-95 interchange there is one stop eastbound and one stop westbound at the Sandtree Drive/Sunrise Drive intersection.

Utilities within the corridor include water, sewer, a gas transmission line, power distribution and transmission lines, fiber optic and communication. Additional coordination with the identified utility agency owners, shown in Table 1-1, is anticipated during the final design stage.

Table 1-1 Utility Agencies

There are two structures within the project limits. Bridge 930516 is a two span single bridge that carries I-95 over Northlake Boulevard and was constructed in 2005. The superstructure consists of pre-stressed AASHTO girders with an out to out width of 183-ft 1-in. The deck carries ten lanes of
traffic: five north bound and five south bound. The bridge includes two $10-\mathrm{ft}$ outside shoulders, two $15-\mathrm{ft}$ inside shoulders, and two $4-\mathrm{ft}$ buffer zones.

I-95 bridge culvert over Earman River Canal (Bridge 930178) was constructed in 1967 and reconstruction in 2004. It is a three barrel box culvert that carries I-95 over the Earman River Canal and consists of three $10-\mathrm{ft}$ x $12-\mathrm{ft}$ cells with a total width of $39-\mathrm{ft}$ and an approximate length of 235 ft . The culvert carries ten lanes of traffic: five north bound and five south bound.

Asbestos reports were requested for both structures, but were not available.

1.3 Purpose and Need

The purpose of the project is to enhance overall traffic operations at the existing interchange of I95 and Northlake Boulevard by providing improvements to achieve acceptable Levels of Service (LOS) at the interchange in the future condition (2040 Design Year). Conditions along Northlake Boulevard are anticipated to deteriorate below acceptable LOS standards if no improvements occur by 2040; the interchange will have insufficient capacity to accommodate the projected travel demand. The purpose and need for the project is based on the following primary and secondary criteria, which was obtained from the Efficient Transportation Decision Making (ETDM) Summary Report (published May 2015).

1.3.1 Primary Criteria

The project is anticipated to improve traffic operations at the I-95 and Northlake Boulevard interchange and study area roadways/intersections by implementing operational and capacity improvements to meet the future travel demand projected as a result of Palm Beach County population and growth.

Based upon the traffic operations analysis conducted for the I-95 at Northlake Boulevard interchange and adjacent signalized intersections during the ETDM Screening and PD\&E phase, the existing and future AM and PM peak hour traffic conditions for the five study intersections along Northlake Boulevard are shown in Table

1.3.1.1 Capacity/Transportation Demand: Improve Operational Capacity and Overall Traffic Operations (Level of Service)

The project is anticipated to improve traffic operations at the I-95 and Northlake Boulevard interchange and study area roadways/intersections by implementing operational and capacity improvements to meet the future travel demand projected as a result of Palm Beach County population and growth.

Based upon the traffic operations analysis conducted for the I-95 at Northlake Boulevard interchange and adjacent signalized intersections during the ETDM Screening and PD\&E phase, the existing and future AM and PM peak hour traffic conditions for the six study intersections along Northlake Boulevard are shown in Table 1-2.

Although all the intersections along Northlake Boulevard (except Sunrise Drive/Sandtree Drive) operate at LOS E or better under existing conditions, it should be noted that several of the individual through and turning movements at the intersections (which include the I-

95 on/off-ramp approaches) operate at LOS F during both the AM and PM peak periods. Without the proposed improvements, the intersections (except Roan Lane) are projected to experience excessive delays and operate at LOS F, which is below acceptable LOS standards, by the 2040 Design Year.

Table 1-2 ETDM Existing and Future Intersection LOS

Intersection	Existing Year 2012/2013				Future Year 2040 No-Build			
	AM		PM		AM		PM	
	LOS	Delay (sec)	LOS	Delay (sec)	LOS	Delay (sec)	LOS	Delay (sec)
Keating Drive	C	23.4	D	47.9	E	59.1	F	102.2
SB Ramp Terminal	C	28.3	C	29.3	E	80.0	D	53.0
NB Ramp Terminal	D	53.2	D	36.0	E	60.4	E	78.5
Roan Lane	A	2.4	A	2.2	A	2.8	A	1.0
Sunrise-Sandtree Drive	D	35.6	F	80.7	F	83.2	F	103.8

1.3.1.2 Growth Management: Accommodate Future Growth and Development

Commercial retail/office and residential land uses are located adjacent to the interchange. Commercial retail/office uses are located along Northlake Boulevard west of the I-95 southbound ramps. Predominantly residential uses are located to the west of Congress Avenue, while residential and commercial retail uses are located to the east of I-95. According to the Future Land Use Maps for Palm Beach County and the City of Palm Beach Gardens, the project area is to remain relatively unchanged.

The population within the vicinity of the interchange is anticipated to increase by 3% from 2005 to 2035, while the employment is expected to increase by approximately 96% from 2005 to 2035 northeast of the interchange. These projections are based on data derived from the Southeast Regional Planning Model (SERPM) Version 6.5 Managed Lanes Model (upgraded to include specific subarea improvements for the I-95 Interchange Master Plan).

As such, the proposed improvements will be critical in supporting growth within the vicinity of the interchange and the overall vision of the City of Palm Beach Gardens and Palm Beach County.

1.3.2 Secondary Criteria

1.3.2.1 Safety: Improve Safety Conditions

The I-95 (SR-9) Interchange at Northlake Boulevard in Palm Beach County Interchange Concept Development Report included a safety analysis of the project area. The following provides a summary of the crash data and analysis results for the three-year period from 2010 through 2012 for the ramp terminal intersections and approaches at the interchange.

There were 51 crashes in 2010, 54 crashes in 2011, and 48 crashes in 2012, to total 153 crashes. The predominant crash type is rear-end crashes accounting for 82 crashes (54\%) of the total crashes.

FDOT's high crash location reports (for the period 2010 through 2012) provide those locations that have a higher crash rate as compared to crash rates for similar statewide roadways. The high crash locations along I-95 within the area of influence include:

- I-95 Northbound Off-Ramp (2011)
- I-95 mainline between mileposts 34.6 and 34.8 (2010)

The proposed improvements are anticipated to provide additional through and turn lanes, as well as interchange ramp improvements, to help reduce conflict points and the potential occurrence of collisions at the interchange.

1.3.2.2 Emergency Evacuation: Enhance Emergency Evacuation and Response Times

I-95 and Northlake Boulevard (from I-95 to SR A1A) serve as part of the emergency evacuation route network designated by the Florida Division of Emergency Management. Also designated by Palm Beach County as evacuation facilities, I-95 and Northlake Boulevard (from I-95 to SR A1A) are critical in facilitating traffic flows during emergency evacuation periods as they connect other major arterials and highways of the state evacuation route network. The project is anticipated to:

- Improve emergency evacuation capabilities by enhancing connectivity and accessibility to I-95 and other major arterials designated on the state evacuation route network from the west and east, and
- Increase the operational capacity of traffic that can be evacuated during an emergency event.

1.3.3 Update to the ETDM Purpose and Need: Capacity/Transportation Demand

The traffic analysis conducted during the PD\&E study further identified the long term deficiencies in the year 2040 and the need for operational improvements to meet the level of services standards. Delay extends up to two to three minutes at some intersections. In both the AM and PM peak hour, the southbound and northbound ramp terminals operate at level of service F. Table 1-3 shows the existing and future LOS for No-Build conditions based on the analysis conducted during the PD\&E IMR traffic analysis process. Table 1-4 shows the I-95
exit ramp queuing up to 66% beyond the available ramp storage causing queue spillback onto I-95. The IMR is contained in the project file.

Table 1-3 Existing and Future No Build Intersection LOS

Intersection	Existing (2015)				Future (2040 No-Build)			
	AM		PM		AM		PM	
	LOS	Delay (sec)	LOS	Delay (sec)	LOS	Delay (sec)	LOS	Delay (sec)
Military Trail	E	55.3	E	64.6	E	63.2	F	90.4
Keating Drive	B	17.5	D	44.3	E	73.6	F	142.0
I-95 SB Ramp	C	27.9	C	31.5	F	80.5	F	90.4
I-95 NB Ramp Terminal	E	59.5	D	47.5	F	103.9	F	123.4
Roan Lane	A	1.1	A	2.3	A	0.9	A	2.6
Sunrise Drive	E	62.9	E	68.8	E	70.7	F	98.6

Table 1-4 Existing and Future No Build Queue Length

Intersection	Existing (2015)		Future (2040 No-Build)	
	Maximum Queue Length	\% Queue Greater than Existing Storage	Maximum Queue Length	\% Queue Greater than Existing Storage
	ft	$\%$	ft	$\%$
I-95 Southbound Off Ramp	1608	53%	1746	66%
I-95 Northbound Off Ramp	1433	27%	1250	11%

1.3.4 Update to the ETDM Consistency with Transportation Plan Goals and Objectives

Project coordination occurred with the Palm Beach Metropolitan Planning Organization (MPO) technical committees and governing board, and several local municipalities. The result of this project coordination culminated with the MPO adopting and funding design, right of way and construction on June 15, 2017 through the approval of LRTP Amendment 5. Below are the three plans and programmed funds. See Appendix A for the relevant LRTP, TIP and STIP pages.

2040 Long Range Transportation Plan (LRTP) as amended 6/15/2017: Amendment \#5: FDOT has identified specific SIS cost feasible projects and corresponding project costs in its "SIS FY 2019/2020 through FY 2023/2024 Second Five Year Plan" and its "SIS FY 2024 through FY 2040 Long Range Cost Feasible Plan." The LRTP has $\$ 84,200,000$ project funds programmed for Design (2015-2019), Right of Way (2020), and Right of Way and Construction (20212025).

Palm Beach MPO Transportation Improvement Program (TIP) FY 2018-2022, Adopted 6/15/2017: Identifies project funds with $\$ 5,100,000$ for Preliminary Engineering in FY 2018, $\$ 58,566,406$ for Right-of-Way in FY 2020-2022, and $\$ 15,050,388(\$ 14,959+\$ 91,200)$ for Construction in FY 2022 for total of $\$ 84,248,427$.

The FDOT Current State TIP (STIP) FY 2018 through >2021 (6/27/2017): Identifies project funds with $\$ 5,1000,000$ for Preliminary Engineering in FY 2018, $\$ 61,463,486$ for Right of Way in FY 2020 through >2021, $\$ 15,050.388$ for Construction FY >2021.

1.4 Proposed Improvements

The I-95 at Northlake Boulevard interchange is located on I-95 between the PGA Boulevard interchange (1.73 miles to the north) and the Blue Heron Boulevard (SR 708) interchange (1.76 miles to the south) within the City of Palm Beach Gardens in eastern Palm Beach County. This interchange project proposes to improve interchange operations to address traffic spillback onto the I-95, reduce congestion, and increase safety. Based upon the traffic operations documented in the I-95 (SR-9) Interchange at Northlake Boulevard in Palm Beach County Interchange Concept Development Report, the following preliminary short-term and long-term improvements have been identified for this interchange and carried into this PD\&E Study:

1.4.1 2020 Opening Year (Short-Term) Improvements

- Add an additional left-turn lane (triple) on the I-95 northbound off-ramp.
- Add an additional lane (dual) on the I-95 northbound on-ramp and an auxiliary lane on northbound I-95 to accommodate a free-flow westbound-to-northbound right-turn lane.
- Add an additional left-turn lane (triple) on the I-95 southbound off-ramp.
- Add an additional westbound left-turn lane (dual) on Northlake Boulevard at Keating Drive.
- Restripe northbound approach of Gardens Towne Square (Keating Drive) to provide an additional left-turn lane (dual) and one shared through/right-turn lane.

1.4.2 2040 Design Year (Long-Term) Improvements

- Add an additional left-turn lane (quadruple) on the I-95 southbound off-ramp.
- Add one eastbound and westbound through lane to Northlake Boulevard from Military Trail to MacArthur Boulevard.
- Restripe northbound approach of Gardens Towne Square (Keating Drive) to provide an exclusive left-turn lane, one through lane and an exclusive right-turn lane.
- Add an additional eastbound left-turn lane (dual) on Northlake Boulevard at Sandtree Drive/Sunrise Drive.
- Add an exclusive southbound right-turn lane on Sunrise Drive at Northlake Boulevard.

1.5 Recommended Modified Concept Alternative

This concept will modify each off-ramp of the existing I-95 tight diamond interchange at Northlake Boulevard. The modifications will widen the existing dual left and right turn lane configuration to include a triple turn lane alignment for both left and right turning maneuvers. The terminal gore point locations on I-95 will remain unchanged. The existing I-95 bridge over Northlake Boulevard will remain unchanged.

Based on the comprehensive evaluation of this PD\&E Study, Alternative 1 has emerged to become the recommended alternative. Below are additional details of Alternative 1 proposed improvements:

- I-95 Off-Ramps will be widened to provide triple left turn lanes and triple right turn lanes; and the storage lengths will be extended.
- For the I-95 northbound off-ramp, provide a second auxiliary lane for 1300 ft .
- For the I-95 southbound off-ramp, provide a second auxiliary lane for 1300 ft .
- I-95 On-Ramps will have three lanes to receive one dedicated right turn lane and dual left turn lanes from Northlake Boulevard.
- The I-95 northbound on-ramp has three lanes that will merge to two lanes, joining I-95 as two auxiliary lanes for 1200 ft , then merge to one lane after an additional 1200 ft lane, then merge into I-95 approximately 3500 ft south of the auxiliary lane taper for the northbound exit to PGA Boulevard.
- The southbound I-95 three lane on-ramp will not change.
- The I-95 mainline bridge over Northlake Boulevard does not require modification.
- At the interchange, Northlake Boulevard will have four (4) through lanes in the eastbound and westbound directions, two (2) left turn lanes and a single lane free-flow right-turn lane to the on-ramps.
- Pedestrians have full mobility along Northlake Boulevard with signalized pedestrian crossings. Bicycle lanes are provided within the Build Alternative project limits on Northlake Boulevard.
- Northlake Boulevard will have one additional lane for eastbound traffic from west of Keating Drive to Sandtree Drive to maintain traffic flow through the I-95 terminals.
- Northlake Boulevard will have one additional lane for westbound traffic from west of Keating Drive to east of Sandtree Drive to maintain traffic flow through the I-95 terminals.
- At Sunset Drive, closure of the northbound right turn should be considered to reduce vehicle conflicts. Access from Sunset Drive to Keating Drive through the shopping center and right-of-way and joint-use agreements should be considered during the design and right-of-way phases.
- At Roan Lane the eastbound left turn, median opening and traffic signal is removed.

1.6 No Build Alternative

The No-Build Alternative assumes that no improvements will be made in the study area and that existing conditions will remain. This alternative is often used to compare the costs and benefits of implementing proposed improvements versus the alternative of continuing to use the existing facility. For this study, the No-Build Alternative would mean that the I-95 and Northlake Boulevard interchange would remain a typical diamond configuration interstate facility and no improvements would occur along Northlake Boulevard. The No-Build Alternative will be considered a viable option throughout the PD\&E Study.

1.7 Purpose of the Noise Study Report

The objectives of this Noise Study Report are to identify noise sensitive sites adjacent to the project corridor, to evaluate existing and future traffic noise levels at the sites with and without the proposed improvements, and to evaluate the need for and effectiveness of noise abatement measures. Additional objectives include the evaluation of construction noise impacts and the identification of noise impact "contours" adjacent to the corridor. The noise evaluation and report were conducted and prepared in accordance to procedures established in 23 Code of Federal Regulations (CFR) 772 and Part 2, Chapter 17 of the FDOT PD\&E Manual (7/27/2016) to determine if future noise levels approach or exceed the FHWA NAC at nearby noise sensitive sites.

2.1 Noise Model and Metrics

The FHWA Traffic Noise Model (TNM) version 2.5 computer software was utilized to determine those noise sensitive sites that may approach or exceed the NAC for existing and future scenarios. The model was run for each scenario to compare predicted noise levels to the applicable NAC. This program uses traffic data, roadway configuration and noise mitigation information, receiver location and height, type of propagation (hard site versus soft site), and variations in terrain between the noise source and the receiver to generate average one-hour noise levels.

The noise levels in this analysis are indicated in decibels (dB) using an "A-weighted" scale dBA. For traffic noise purposes the A-weighted scale, which closely approximates the range of frequencies a human ear can hear, is used. The A-weighted equivalent steady-state sound level "Leq" is the noise level that in a stated period contains the same acoustic energy as the time-varying sound level during the same time period, with Leq(h) being the hourly value of Leq. All noise levels presented in this study are hourly equivalent noise levels Leq(h) reported to the nearest 0.1 dBA . Use of the $\mathrm{dB}(\mathrm{A})$ and Leq(h) metrics to evaluate traffic noise is consistent with 23 CFR 772 and with FDOT procedures. For reference purposes, Table 2-1 shows the typical decibel levels associated with common outdoor and indoor activities.

COMMON OUTDOOR ACTIVITIES	NOISE LEVEL dB(A)	COMMON INDOOR ACTIVITIES
	---110---	Rock Band
Jet Fly-over at 1000 ft		
	---100---	
Gas Lawn Mower at 3 ft		
Diesel Truck at 50 ft , at 50 mph		Food Blender at $1 \mathrm{~m}(3 \mathrm{ft})$
	---80---	Garbage Disposal at $1 \mathrm{~m}(3 \mathrm{ft})$
Noise Urban Area (Daytime)Gas Lawn Mower at 100 ft		
	---70---	Vacuum Cleaner at 10 ft
Commercial Area		Normal Speech at 3 ft
Heavy Traffic at 300 ft	---60---	
		Large Business Office
Quiet Urban Daytime	---50---	Dishwasher Next Room
Quiet Urban Nighttime Quiet Suburban Nighttime	---40---	Theater, Large Conference Room (Background)
	---30---	Library
Quiet Rural Nighttime	---20---	Bedroom at Night, Concert Hall (Background)
	---10---	
Lowest Threshold of Human Hearing	---0---	
		Lowest Threshold of Human Hearing

Table 2-1 Typical Noise Levels
2.2 Traffic and Speed Data

The TNM traffic input was obtained using data from the FDOT 2013 Quality / Level of Service Handbook and 2012 Q/LOS Tables, the Methodology Letter of Understanding (MLOU) for SR 9/I95 at Northlake Boulevard Interchange and the Interchange Modification Report (IMR) for SR 9/I95 at Northlake Boulevard Interchange. The TNM traffic input data included peak hour Truck Factor (T), peak hour volumes, split per lane as appropriate. For the existing and future condition, the SR 9/I-95 posted speed is 65 mph and the Northlake Boulevard posted speed is 45 mph . I-95 ramp speeds were 35 mph between the auxiliary lane and traffic signal stop bar. Table 2-2 provides a summary of the traffic data for the existing year 2015 and design year 2040 utilized for the traffic noise analysis. Classification data for medium trucks, heavy trucks, buses and motorcycles was obtained from nearby FDOT count sites.

Roadway/ Highway Segment	Existing 2015 Hourly Volume	LOS C Hourly Volume (No Build)	LOS C Hourly Volume (Build)	Posted MPH	Peak Hour Truck \%
I-95 South of Northlake Boulevard	8,680	8,680	8,680	65	4.08%
I-95 Between ramps at Northlake Boulevard	7,087	7,680	7,680	65	4.08%
I-95 North of Northlake Boulevard	8,007	8,680	8,680	65	4.08%
I-95 NB On Ramps	1,078	$2,361^{*}$	$2,361^{*}$	35	3.52%
I-95 NB Off Ramps	1,617	$1,818^{*}$	$1,818^{*}$	35	3.60%
I-95 SB On Ramps	1,625	$1,781^{*}$	$1,781^{*}$	35	3.20%
I-95 SB Off Ramps	936	$1,965^{*}$	$1,965^{*}$	35	2.21%
Northlake Boulevard (Military to Keating)	2,057	2,793	2,793	45	3.83%
Northlake Boulevard (Keating to I-95)	2,345	2793	3,772	45	3.83%
Northlake Boulevard (Between I-95 Ramp Terminals)	2,873	2,793	3,772	45	2.71%
Northlake Boulevard (I-95 to Sunrise Drive)	2,818	2,793	3,772	45	2.71%

*indicates I-95 Ramp Demand Volume

2.3 Noise Abatement Criteria

Table 2-2 TNM Traffic Data

The FHWA has NAC for seven land use activity categories. These criteria determine when an impact occurs and when consideration of noise abatement analysis is required. Maximum noise level thresholds have been established for five of these activity categories. These thresholds represent the traffic noise impact level at which abatement measures must be considered. The NAC are listed in Table 2-3.

Table 2-3 FHWA and FDOT Noise Abatement Criteria

NOISE ABATEMENT CRITERIA [Hourly A-Weighted Sound Level-decibels (dB(A))]				
Activity	Activity Leq(h) ${ }^{1}$		Evaluation location	Description of activity category
Category	FHWA	FDOT		
A	57	56	Exterior	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.
B^{2}	67	66	Exterior	Residential
C^{2}	67	66	Exterior	Active sports areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreational areas, Section 4(f) sites, schools, television studios, trails, and trail crossings.
D	52	51	Interior	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios.
E^{2}	72	71	Exterior	Hotels, motels, offices, restaurants/bars, and other developed lands, properties or activities not included in A-D or F.
F	-	-	-	Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing.
G	-	-	-	Undeveloped lands that are not permitted.

(Based on Table 1 of 23 CFR Part 772)
${ }_{1}$ The Leq(h) Activity Criteria values are for impact determination only, and are not design standards for noise abatement measures.
${ }^{2}$ Includes undeveloped lands permitted for this activity category.
Note: FDOT defines that a substantial noise increase occurs when the existing noise level is predicted to be exceeded by 15 decibels or more as a result of the transportation improvement project. When this occurs, the requirement for abatement consideration will be followed.
$\frac{2}{3}$ Source: Florida Department of Transportation (FDOT) PD\&E Manual Part 2, Chapter 17, Noise, version May 24, 2011.
A noise sensitive site is defined as any property (owner occupied, rented, or leased) where frequent exterior human use occurs and where a lowered noise level would be of benefit. Some examples of noise sensitive receivers include residences, picnic areas, parks, churches and hospitals. The

FHWA has established noise levels at which noise abatement must be considered. The NAC vary according to a property's land use category.

Land use in the project area includes primarily commercial and residential developments. These types of land uses are considered Activity Category B, C \& E receptors as established by FHWA. The FDOT uses the approach criteria which means within 1 decibel (dB) of the appropriate FHWA NAC. Therefore, the NAC for Activity Category B and C receivers is 66 dBA hourly average. For Activity Category E receivers, the NAC is a 71 dBA hourly average.

Receptor sites in the study area were initially identified using aerial imagery to locate areas that would potentially be noise sensitive. Site visits and field reviews were also conducted to confirm receptor site locations. Currently, the noise sensitive sites in the immediate project area are primarily single and multi-family dwellings. In total, 47 receptor sites were evaluated by this study. Of these, 43 are residential and four (4) are special use locations. Aerial images with receptor locations are provided in Figures C-1 through C-4 in Appendix \mathbf{C} of this report.

2.4 Noise Abatement Measures

2.4.1 Traffic Management

Traffic management measures include traffic control devices and signing for prohibition of certain vehicle types, time-use restriction for certain vehicle types, modified speed limits, and exclusive lane designations. Prohibiting vehicle types along Interstate I-95 and Northlake Boulevard is not a viable option since both roadways function as the main route for cars and trucks accessing commercial businesses and residential neighborhoods.

2.4.2 Alignment Modifications

Horizontal and vertical alignment shifts have been considered throughout the PD\&E Study. The existing land use and right-of-way constraints throughout the study area limit how far the road can be shifted in any direction. The I-95 bridge over Northlake Boulevard also creates constraints for vertical and horizontal alignment shifts along Northlake Boulevard.

2.4.3 Buffer Zones

Acquisition of real property or interests (predominately undeveloped property) can be used to serve as a buffer zone to preempt development which would be adversely impacted by traffic noise. While land use planning to avoid impacts would be beneficial for future development, it is not applicable to the existing residential developments and homes represented by the three areas evaluated in this report.

2.4.4 Noise Barriers

The construction of noise barriers is the most common type of traffic noise abatement. When considering noise barriers for abatement, the feasibility and reasonableness factors are evaluated relative to each alternative. The feasibility of providing noise abatement is focused on the ability of the noise barrier to provide a noticeable insertion loss. This is the lowering of the noise level as a result of incorporating a noise barrier wall. Barrier analysis was facilitated through the use of TNM 2.5. The feasibility of providing noise abatement is focused on the ability of the noise barrier to provide a reduction of at least $5 \mathrm{~dB}(\mathrm{~A})$ to impacted receptors. The noise reduction design goal of $7 \mathrm{~dB}(\mathrm{~A})$ must be obtained by one or more impacted receptors.

Failure to achieve the noise reduction design goal will result in the noise abatement measure being deemed not reasonable.

The reasonableness of constructing a noise barrier or barrier extension is focused on the cost of providing the proposed noise barrier. Where a noise barrier was proposed, TNM was used to determine the barrier's dimensions and location. Barrier costs were calculated in TNM by multiplying the length of the barrier by the height to determine the surface area of the barrier and multiplying this by the $\$ 30$ current cost per square foot factor for cost estimating purposes. The relationship between unit costs and the upper limit for cost reasonableness was based on maintaining a constant upper limit of 1,400 sq. ft of noise barrier per benefited receiver (PD\&E Manual Part 2, Chapter 17 Noise, 7/27/2016).

The feasibility and reasonableness of providing noise barriers at impacted nonresidential land uses (Activity Category C, D and E land uses) are determined by following the guidance found in the FDOT publication "A Method to Determine Reasonableness and Feasibility of Noise Abatement at Special Use Locations" (2009).

2.4.5 Existing Noise Barriers

There are existing noise barriers along the Southwest, Northwest, and Northeast quadrants of the I-95 and Northlake Boulevard interchange since there are noise sensitive receptors in all of these areas. The Southeast quadrant is primarily commercial development. The existing noise barriers are identified on the exhibits provided in Appendix C. Based on the construction plans, they are estimated to be approximately 22 ft high, which is the maximum height that can be provided for abatement. These noise barriers were also modeled as an existing condition in TNM analysis.

3.1 Model Validation

To verify the accuracy of the computer noise model for the I-95 and Northlake Boulevard interchange, field monitoring and ambient sound measurements were conducted following procedures in FHWA's guidance document, "Measurement of Highway-Related Noise." Noise monitoring was performed on October $25^{\text {th }}$ and $26^{\text {th }}, 2016$ utilizing a Quest SoundPro DL-2-1/3 integrating sound level meter. The meter was calibrated before and after daily monitoring sessions using a Quest QC-10 acoustic calibrator. Both the sound level meter and calibrator meet or exceed American National Standards Institute (ANSI) standards. All monitoring events were ten minutes in duration, with a minimum of three repetitions at each location, and were conducted according to FDOT procedures. Field measurements were taken primarily to verify that traffic noise is the primary source of noise in the area. This allowed validation of the Traffic Noise Model (TNM) under existing highway conditions. See Appendix B for the field monitoring locations and measured ambient site conditions.

Traffic data for TNM validation was collected by Traffic Survey Specialists, Inc. on October $25^{\text {th }}$ and $26^{\text {th }}$, 2016 using video count stations located along I-95 and Northlake Boulevard. Vehicle speeds were measured using a Stalker Basic Stationary radar gun kit and posted speeds were also noted.

The verification sites were located at a distance from I-95 and Northlake Boulevard that is consistent with noise sensitive sites in proximity to the road. The results of field monitoring for TNM validation are included in Table 3-1. The variance between field measured and TNM predicted noise levels were within $+/-3 \mathrm{dBA}$ as specified in Part 2, Chapter 17 of the FDOT PD\&E Manual (7/27/2016).

Table 3-1 TNM Validation Results

Receiver ID	Location	Date	Time	Average Field Measured Level (dBA)	Computer Predicted Level (dBA)	Variation (dBA)
ML-4	9519 Birmingham Dr.	$10 / 26 / 16$	$7: 04 \mathrm{AM}-7: 34 \mathrm{AM}$	63.3	60.7	-2.6
ML-5	9141 Birmingham Dr.	$10 / 26 / 16$	$7: 45 \mathrm{AM}-8: 15 \mathrm{AM}$	65.6	63.6	-2.0
ML-6	$867940^{\text {th }}$ Terrace N	$10 / 26 / 16$	$8: 26 \mathrm{AM}-8: 56 \mathrm{AM}$	65.7	63.6	-2.1

3.2 Existing Noise and Predicted Noise Levels for Noise Sensitive Sites

Residential receptors are located adjacent to the I-95 and Northlake Boulevard on three of the four quadrants of the existing interchange. Since the residences do not belong to specifically named communities, they are described by the local street names where impacts were identified in the vicinity. Table 3-2 and Table 3-3 below include the results of all the evaluated 47 receptors. There were a total of 29 impacted Category B, C \& E NAC receptors. Four of these receptors are impacted in all of the scenarios evaluated, the Existing condition, the No Build and the proposed Alternative

First, second and third row receptors were initially evaluated for noise impacts. Where impacts were identified, additional receptors were analyzed to determine the number of impacted receptors in an affected area and how those receptors could potentially benefit from additional abatement measures. Where the existing noise barriers are located, maximum abatement has already been provided by the 22 ft noise barriers.

The receptors RL-4 and RL-41 through RL-52 are identified the Vancott area since these residences are centered around this street located in the northeast quadrant of the interchange study area. Impacted residences in this area ranged from 64.6 to 69.8 dBA . One special use location associated with outdoor patio use at the Gardens School of Technology Arts is represented by ML-2 and is impacted both in its existing condition and by the proposed alternative. See Table 3-2 and Table 3-3 for a summary of the results.

Another area where impacts were observed is located in the southeast quadrant of the interchange study area near the Sandtree community, south of the commercial development. This is a duplex (two units per building) townhome community with a small community playground. For the proposed build alternative, impacted residences included RL-6 and RL-61 through RL-71. Impacts ranged from 65.7 to 70.6 dBA and the Sandtree playground special use location, RL-60, was also

The Rochester area includes a few impacted residences and the special use swimming pool located at the Inn of the Americas. This area is located on the northwest quadrant of the interchange study area. RL-11 is the swimming pool and its predicted noise level for the proposed alternative is 71.2 dBA. See Table 3-3 for these results. The residences behind the Inn of the America's, RL-111 through RL-115, are predicted to experience impacts ranging from 66.3 to 67.3 dBA .

Overall, there were three (3) impacted receptors for the Existing condition, three (3) impacted receptors for the No-Build option and 29 impacted receptors for the proposed improvements associated with the Alternative 1-Modified Concept. The predicted range of increase over existing sound levels for Category B residential receptors for both the No-Build and the Alternative 1 Modified Concept is 0.7 to 7.8 dBA , respectively. The range of increase over existing sound levels for Category C and E special use receptors for both the No-Build and the Alternative 1 Modified Concept are 0.9 to 5.2 dBA , respectively. TNM did not predict a substantial increase of noise levels (15 dBA) above existing conditions would occur at any location as a result of the proposed interchange improvements. Where there are impacts determined for noise sensitive receptors, abatement measures must be evaluated.

Table 3-2 Results of TNM Analysis at Category B Residential Receptors (66 dBA NAC)

			LAeq1h(dBA)		
Receiver ID*	Activity Description (Category B)	Number Of Units	Existing (2015)	No Build (2040)	Alternative 1 - Modified Concept (2040)
ML-4	Residential	1	60.7	60.7	62.8
ML-5	Residential	1	63.6	63.7	65.4
ML-6	Residential	Vacant Lot	63.6	63.6	65.1
RL-1	Residential	2	62.4	62.5	64.2
RL-2	Residential	2	60.7	60.8	63.7
RL-3	Residential	2	61.9	62.2	63.7
RL-4	Residential	1	64.8	65.3	$\mathbf{6 9 . 8}$
RL-6	Residential	2	62.2	62.2	$\mathbf{6 8 . 7}$
RL-7	Residential	1	62.0	62.2	63.5
RL-8	Residential	1	61.7	61.9	63.6
RL-9	Residential	1	62.0	62.1	64.0
RL-10	Residential	1	63.4	63.5	64.8
RL-12	Residential	1	63.8	63.8	65.1
RL-13	Residential	1	62.9	62.9	64.6
RL-20	Residential	1	60.1	60.2	62.6
RL-41	Residential	1	63.1	63.4	$\mathbf{6 8 . 0}$
RL-42	Residential	1	63.0	63.7	$\mathbf{6 8 . 7}$
RL-43	Residential	1	59.6	59.9	65.7
RL-44	Residential	1	57.9	58.3	64.6
RL-45	Residential	1	60.0	60.6	$\mathbf{6 6 . 3}$
RL-46	Residential	1	63.2	63.5	$\mathbf{6 8 . 3}$
RL-47	Residential	1	61.3	61.5	$\mathbf{6 6 . 8}$
RL-48	Residential	1	61.1	61.6	$\mathbf{6 7 . 1}$
RL-49	Residential	1	60.1	60.5	$\mathbf{6 6 . 2}$
RL-50	Residential	1	62.1	62.8	$\mathbf{6 8 . 0}$
RL-51	Residential	1	58.3	58.6	64.8
RL-52	Residential	1	58.6	59.1	65.2
RL-61	Residential	2	61.5	61.5	$\mathbf{6 8 . 3}$
RL-62	Residential	2	61.5	61.5	$\mathbf{6 8 . 2}$
RL-63	Residential	2	59.2	59.2	$\mathbf{6 6 . 6}$

			LAeq1h(dBA)		
Receiver ID*	Activity Description (Category B)	Number Of Units	Existing (2015)	'No Build (2040)	Alternative 1 Modified Concept (2040)
RL-64	Residential	2	57.9	57.9	65.7
RL-65	Residential	2	64.8	64.8	70.6
RL-66	Residential	2	62.0	62.0	68.5
RL-67	Residential	2	61.6	61.6	68.4
RL-68	Residential	2	60.4	60.4	67.6
RL-69	Residential	2	59.7	59.7	66.9
RL-70	Residential	2	59.2	59.2	66.6
RL-71	Residential	2	58.8	58.9	66.3
RL-111	Residential	1	66.8	66.9	66.8
RL-112	Residential	1	64.9	65.1	67.3
RL-113	Residential	1	62.5	62.7	66.9
RL-114	Residential	1	63.7	63.9	67.3
RL-115	Residential	1	64.6	64.9	66.3
Range of Noise Increase Over Existing			N/A	0.0-0.7	0.0-7.8

Receiver ID	Activity Description	Land Use Activity Category	NAC (dBA)	Lxisting (2015)	'No Build' (2040)	Alternative 1- Modified Concept (2040)
	School Outdoor Use	C	66	$\mathbf{7 0 . 7}$	$\mathbf{7 1 . 0}$	$\mathbf{7 2 . 3}$
RL-5	Starbucks Outdoor Seating	E	71	68.2	69.1	$\mathbf{7 2 . 3}$
RL-11	Hotel Swimming Pool	E	71	70.3	70.7	$\mathbf{7 1 . 2}$
RL-60	Sandtree Playground	C	66	$\mathbf{6 8 . 4}$	$\mathbf{6 8 . 4}$	$\mathbf{7 3 . 6}$
Range of Noise Increase Over Existing		N/A	$\mathbf{0 . 0 - 0 . 9}$	$\mathbf{0 . 5 - 5 . 2}$		

Table 3-3 Results of TNM Analysis at Special Use Locations

3.3 Noise Abatement Analysis

Noise barriers reduce noise levels by blocking the sound path between the noise source and the receptor. In order to effectively reduce traffic noise, a noise barrier must be relatively long, continuous (without intermittent openings), and sufficiently tall to provide a reduction in noise levels. Following procedures developed by the FDOT, the minimum requirements for a noise barrier to be considered both feasible and economically reasonable include:

- A noise barrier must provide at least a five (5) dBA reduction in traffic noise for at least two impacted noise sensitive receptors, and also provide at least a seven (7) dBA reduction (i.e., the FDOT's noise reduction design goal) for at least one impacted receptor.
- The feasibility and reasonableness of providing noise barriers at impacted non-residential land uses (Activity Category C and E land uses) was determined following guidance found in the FDOT publication "A Method to Determine Reasonableness and Feasibility of Noise Abatement at Special Use Locations" (2009).

Three separate noise barriers were evaluated for the effectiveness in providing sound reduction at impacted noise sensitive receptors in the Vancott, Sandtree and Rochester areas. The Vancott and Rochester barriers are proposed extensions of existing noise barriers located along I-95. See Appendix C, Figures C-1 and C-2. The Sandtree barrier is a new proposed structure along I-95 on the east side in the southeast quadrant of the interchange study area. Coordinate locations and barrier dimensions are in Table 3-4. All three barriers were modeled in TNM at the 22 ft maximum height to determine if it would meet the noise reduction goals of 5 dBA and 7 dBA .

Table 3-4 Locations of Evaluated 22 ft Noise Barrier or Extension* of Existing Noise Barrier

Location/Coordinates	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Length (ft)
*Vancott Area (Begin)	$950,500.4$	$901,620.6$	12.00	
*Vancott Area (End)	$950,571.5$	$900,991.9$	12.00	
Sandtree Area (Begin)	$950,393.1$	$898,621.7$	12.00	272
Sandtree Area (End)	$950,374.7$	$898,350.3$	12.00	
				299
*Rochester Area (Begin)	$950,074.2$	$901,236.8$	12.00	

3.3.1 Vancott Area Barrier Analysis

A 905 ft long and 22 ft high barrier extension was modeled in TNM to determine noise reduction of impacted receptors in the Vancott area. See Table 3-5 below. The ML-2 receptor is adjacent to I-95 and is the Gardens School of Technology Arts. This is a special use location with an exterior patio use and is a Category C receptor with a 66 dBA NAC. No other receptor was able to achieve the 5 dBA minimum noise reduction design goal requirement. Therefore, the barrier is not considered feasible.

Table 3-5 Calculated Noise Reduction Noise Barrier Extension Evaluated for the Vancott Area

Receiver ID	Calculated Noise Reduction for 22 ft Barrier (dBA)
ML-2	7.2
RL-4	0.5
RL-5	0.1
RL-41	1.0
RL-42	0.3
RL-43	0.4
RL-44	0.3
RL-45	0.3

Receiver ID	Calculated Noise Reduction for 22 ft Barrier (dBA) Extension
RL-46	0.6
RL-47	0.6
RL-48	0.4
RL-49	0.5
RL-51	0.4
RL-52	0.3

Item	Criteria	Result
1	Length of proposed noise barrier	905 ft
2	Height of proposed noise barrier	22 ft
3	Multiply item 1 by item 2	19910 sq. ft
4	Average amount of time that a person stays at the site per visit	1 hour
5	Enter the average number of people that use this site per day that will receive at least a five $\mathrm{dB}(\mathrm{A})$ benefit from abatement at the site	100 people
6	Multiply item 4 by item 5	100 person hours
7	Divide item 3 by item 6	199
8	Multiply item 7 by $\$ 42,000$	\$8,358,000
9	Does item 8 exceed the "abatement cost factor" of \$995,935/person-hour/ft 2	Yes
10	If item 9 is no, abatement is reasonable	N/A
11	If item 9 is yes, abatement is not reasonable	Not reasonable

Since the ML-2 special use location did achieve the 7 dBA design goal the Method to Determine Reasonableness and Feasibility of Noise Abatement at Special Use Locations was done and the results are presented in Table 3-6 below. Since the evaluation of this barrier exceeded the "abatement cost factor" of $\$ 995,935 /$ person-hour/ft2, the Vancott area noise barrier is not considered a reasonable abatement measure.

Table 3-6 Evaluation of the Proposed Vancott Noise Barrier at a Special Use Location

3.3.2 Sandtree Area Barrier Analysis

A 272 ft long and 22 ft high barrier extension was modeled in TNM to determine noise reduction of impacted receptors in the Sandtree area. See Table 3-7 below. The RL-60 receptor which is the Sandtree community playground is a Category C special use location with a 66
dBA NAC. No receptor was able to achieve the 7 dBA and 5 dBA minimum noise reduction design goal requirements. Therefore, the barrier is not considered feasible.

Table 3-7 Calculated Noise Reduction Noise Barrier Evaluated for the Sandtree Area

Receiver ID	Calculated Noise Reduction for 22 ft New Barrier (dBA)
RL-6	2
RL-60	4.6
RL-61	1.5
RL-62	1
RL-63	1.3
RL-64	1
RL-65	2.9
RL-66	2.0
RL-67	1.3
RL-68	1.5
RL-69	0.9
RL-70	1.4
RL-71	1.3

Since the RL-60 special use location approached the 5 dBA minimum noise reduction for the proposed 22 ft barrier segment, the Method to Determine Reasonableness and Feasibility of Noise Abatement at Special Use Locations was done and the results are in Table 3-8 below. Since the evaluation of this barrier exceeded the "abatement cost factor" of \$995,935/personhour/ft2, the Sandtree area noise barrier is also not considered a reasonable abatement measure.

Table 3-8 Evaluation of the Proposed Sandtree Noise Barrier at a Special Use Location

Item	Criteria	Result
1	Length of proposed noise barrier	272 ft
2	Height of proposed noise barrier	22 ft
3	Multiply item 1 by item 2	$5984 \mathrm{sq} . \mathrm{ft}$
4	Average amount of time that a person stays at the site per visit	1 hour
5	Enter the average number of people that use this site per day that will receive at least a five dB(A) benefit from abatement at the site	20 people
6	Multiply item 4 by item 5	20 person hours

Item	Criteria	Result
7	Divide item 3 by item 6	299
8	Multiply item 7 by $\$ 42,000$	$\$ 12,566,400$
9	Does item 8 exceed the "abatement cost factor" of $\$ 995,935 /$ person-hour/ft 2	Yes
10	If item 9 is no, abatement is reasonable	N/A
11	If item 9 is yes, abatement is not reasonable	Not reasonable

3.3.3 Rochester Area Barrier Analysis

A 299 ft long and 22 ft high barrier extension was modeled in TNM to determine noise reduction of impacted receptors in the Rochester area. See Table 3-9 below. The RL-11 receptor which is adjacent to I-95 and is the Inn of the Americas swimming pool. This is a special use location with exterior use for a hotel and is a Category E receptor with a 71 dBA NAC. No other receptor was able to achieve the 7 dBA and 5 dBA minimum noise reduction design goal requirements. Therefore, the barrier is not considered feasible.

Table 3-9 Calculated Noise Reduction Noise Barrier Extension Evaluated for the Rochester Area

Receiver ID	Calculated Noise Reduction for 22 ft Barrier (dBA) Extension
ML-5	1.3
RL-11	4.3
RL-111	2.4
RL-112	0.6
RL-113	0.1
RL-114	0.3
RL-115	3.3

Since the RL-11 special use location approached the 5 dBA minimum noise reduction for the proposed 22 ft barrier segment, the Method to Determine Reasonableness and Feasibility of Noise Abatement at Special Use Locations was done and the results are in Table 3-10 below. Since, the evaluation of this barrier exceeded the "abatement cost factor" of $\$ 995,935 /$ person-hour/ft2, the Rochester area noise barrier is not considered a reasonable abatement measure.

Table 3-10 Evaluation of the Proposed Rochester Noise Barrier at a Special Use Location

Item	Criteria	Result
1	Length of proposed noise barrier	303 ft
2	Height of proposed noise barrier	22 ft
3	Multiply item 1 by item 2	6666 sq. ft
4	Average amount of time that a person stays at the site per visit	2 hours
5	Enter the average number of people that use this site per day that will receive at least a five $\mathrm{dB}(\mathrm{A})$ benefit from abatement at the site	100 people
6	Multiply item 4 by item 5	200 person hours
7	Divide item 3 by item 6	33.33
8	Multiply item 7 by $\$ 42,000$	\$1,399,860
9	Does item 8 exceed the "abatement cost factor" of \$995,935/person-hour/ft2	Yes
10	If item 9 is no, abatement is reasonable	N/A
11	If item 9 is yes, abatement is not reasonable	Not reasonable

Conclusions

The FHWA TNM version 2.5 computer model and FDOT guidelines were incorporated into the noise analysis for the project area. Future noise levels will increase whether or not the proposed improvements are constructed due to the expected increase in future traffic levels. Results of the model indicate that predicted noise levels will approach, and in some cases exceed, the Activity Category B, C and E NAC at receptors in the project vicinity. The predicted noise level varies according to the location of the residence or special use receptor. TNM did not predict a substantial increase of noise levels (15 dBA) above existing conditions would occur at any location as a result of the proposed interchange improvements.

The FHWA requires that when the noise levels of a proposed federally aided roadway project approach or exceed NAC, noise abatement measures must be evaluated. Overall, there were three (3) impacted receptors for the Existing condition, three (3) impacted receptors for the No-Build option and 29 impacted receptors for the proposed improvements associated with the Alternative 1 - Modified Concept option. The range of increase in existing sound levels for Category B residential receptors for both the No-Build and the Alternative 1 Modified Concept are 0.7 to 7.8 dBA , respectively. The range of increase in existing sound levels for Category C and E special use receptors for both the No-Build and the Alternative 1 Modified Concept are 0.9 to 5.2 dBA , respectively. Since traffic noise impacts are predicted at the Vancott area, Sandtree area and Rochester area for the recommended alternative, Alternative 1 - Modified Concept, abatement measures were considered at the Activity Category B, C and E receptors.

Traffic management and prohibiting vehicle types along Interstate I-95 and Northlake Boulevard is not a viable option since both roadways function as the main route for cars and trucks accessing commercial businesses and residential neighborhoods. Horizontal and vertical alignment shifts have been considered throughout the PD\&E Study. The existing land use and right-of-way constraints throughout the study area limit how far the road can be shifted in any direction. The I-95 bridge over Northlake Boulevard also creates additional constraints for vertical and horizontal
alignments shifts. Acquisition of real property or interests (predominately undeveloped property) can be used to serve as a buffer zone to preempt development which would be adversely impacted by traffic noise. While land use planning to avoid impacts would be beneficial for future development, it is not applicable to the existing residential developments, school, business, playground and hotel represented by the three areas evaluated in this report.

There are existing noise barriers along the southwest, northwest, and northeast quadrants of the I95 and Northlake Boulevard interchange and there are noise sensitive receptors in all of these areas. The southeast quadrant is primarily commercial development and businesses. The existing noise barriers are identified on the exhibits provided in Appendix C. Based on the construction plans, they were estimated to be approximately 22 ft high, which is the maximum height that can be provided for abatement. These noise barriers were also modeled as an existing condition in TNM analysis.

When evaluating noise abatement options, the Vancott area and Rochester area included extensions of the existing noise barriers. The Sandtree area evaluation included a new 22 ft high noise barrier along I-95. All three barriers evaluated where not found to be feasible since they did not fulfill the required noise reduction factors (5-7 dBA). Further analysis for the impacted special use locations where evaluated by the Method to Determine Reasonableness and Feasibility of Noise Abatement at Special Use Locations. All three evaluated barriers were also found to be not be reasonable since they did not meet the required cost/benefit criteria. Therefore, no new noise barriers or barrier extensions are recommended for the proposed recommended Alternative 1 - Modified Concept.

Land uses adjacent to I-95 and Northlake Boulevard are identified on the FDOT listing of noise and vibration-sensitive sites (i.e., residences). Construction of the proposed roadway improvements is not expected to have any significant noise or vibration impact. If sensitive land uses develop adjacent to the roadway prior to construction, increased potential for noise or vibration impacts could result. It is anticipated that the application of the FDOT Standard Specifications for Road and Bridge Construction will minimize or eliminate potential construction noise and vibration impacts. However, should unanticipated noise or vibration issues arise during the construction process, the Project Engineer, in coordination with the District Noise Specialist and the Contractor, will investigate additional methods of controlling these impacts.

In accordance with 23 CFR Part 772, measures will be taken that are prudent and feasible to assure that the location and design of highways are compatible with existing and planned land uses. Local agencies and officials play an important role by ensuring that future residential development does not occur in projected noise impact areas. Coordination with local agencies and officials has been conducted during the development of this study and a copy of the Final Noise Study Report will be provided to appropriate local planning authorities in order to assist in the development of compatible future land uses.

A detailed public involvement program has been carried out for this project since the beginning of the PD\&E Study.

- On November 11, 2015, the Public, Agencies and Elected Officials Kickoff meetings were held. A brief presentation provided the project overview, purpose and need and allowed interested attendees to interact with the project team. A public kickoff meeting summary package contains the notifications and public comments.
- On December 8, 2016, the Alternatives Public Workshop was held and attended by 130 participants. Approximately 1250 notifications were distributed to both owners and occupants within 500 ft of the project limits. Twenty-five people provided written comments. Public comment identified right of way acquisition and noise concerns while also supporting a general need to improve traffic flow. A public workshop summary package contains the meeting notifications, comments and responses.
- On DATE TBD, a public hearing was held for the project. Noise displays were available for public review and project noise specialists attended to discuss noise concerns and answer questions. The formal presentation included discussion of the impacts and abatement measures. A copy of the transcript is in the project file.

In order to reduce the possibility of additional noise related impacts, noise level contours were developed for the future improved roadway facility. These noise contours delineate the distance from the improved roadway's edge-of-pavement (EOP) where the NAC for each Activity Category B / C and E is expected to be approached in the design year (2040) with the proposed improvements to I-95 and the Northlake Boulevard interchange.

Providing a buffer between a roadway and future noise sensitive land uses is an abatement measure that can minimize/eliminate noise impacts in areas of future development. To encourage the use of this abatement measure through local land use planning and zoning, copies of this report, once finalized, will be shared with local Palm Beach County officials consistent with state requirements found in Part 2, Chapter 17 of the PD\&E Manual (7/27/2016), and federal requirements found in 23 CFR Part 772.

Figure 7-1 Noise Contours for Activity Categories B/C and E for the I-95 Mainline

Figure 7-2 Noise Contours for Activity Categories B/C and E for Northlake Boulevard

23 CFR Part 772, "Procedures for Abatement of Highway Traffic Noise and Construction Noise", January 2011. Available from: http://www.fhwa.dot.gov/environment/noise/

Federal Highway Administration Report Number FHWA-PD-96-046, "Measurement of Highway-Related Noise." Cynthia S.Y. Lee and Gregg Fleming; May, 1996; 206 pages.
Available from: http://fhwa.dot.gov/environment/measure/index.htm
Federal Highway Administration Report Number FHWA-PD-96-009, "FHWA Traffic Noise Model, Version 1.0 User’s Guide." January 1998; 192 pages + supplements. Available from McTrans Center, University of Florida, Gainesville, Florida. Also found at the official TNM website: http://www.trafficnoisemodel.org

Florida Department of Transportation Policy Number 000-360-005-e, Noise Abatement", September 15, 2005; 1 page. Available at: http://www2.dot.state.fl.us/proceduraldocuments/procedures/bin/000360005.pdf

Florida Department of Transportation, "Project Development \& Environmental (PD\&E) Manual, Part 2, Chapter 17, Noise." July 27, 2016; 30 pages. Available at http://www.fdot.gov/environment/pubs/pdeman/pdeman-Archive-2016.shtm

Florida Department of Transportation "Standard Specifications for Road and Bridge Construction." 2004; 974 pages. Available from: http://www.dot.state.fl.us/specificationsoffice/2004BK/toc.htm

Florida Statute 335.17, "State highway construction; means of noise abatement." 1989; 1 page. Available from:
http://www.leg.state.fl.us/Statutes/index.cfm?mode=View\ Statutes\&SubMenu=1
\&Appmode=DisplayStatute\&SearchString=URL=CH0335/Sec17.htm

Appendix A

Traffic Data

WESTBOUND NORTHLAKE BLVD WEST OF I-95 PALM BEACH GARDENS, FLORIDA COUNTED BY: KEVIN MCNALLY COUNTED IN 10 MINUTE INTERVALS

Traffic Survey Specialists, Inc.
85 SE 4th Avenue, Unit 109
Delray Beach, Florida 33483
(561) 272-3255

Vehicle group 1

Study Name: WBNLW
Site Code : 00160230
Start Date: 11/13/16
Page : 1

EASTBOUND NORTHLAKE BLVD WEST OF I-95 PALM BEACH GARDENS, FLORIDA COUNTED BY: KEVIN MCNALLY COUNTED IN 10 MINUTE INTERVALS

Traffic Survey Specialists, Inc.
85 SE fth Avenue, Unit 109
Defray Beach, Florida 33483
(561) 272-3255

Vehicle group 1

Study Name: EBNLW
Site Code : 00160230
Start Date: 11/13/16
Page : 1

IGNORE

Traffic Survey Specialists, Inc.
NORTHBOUND I-95 SOUTH OF NORTHLAKE BLVD PALM BEACH GARDENS, FLORIDA COUNTED BY: KEVIN MCNALLY COUNTED IN 10 MINUTE INTERVALS

Study Name: NB95S
Site Code : 00160230
Start Date: 11/12/16
Page : 1

IGNORE

NORTHBOUND I-95 NORTH OF NORTHLAKE BLVD
PALM BEACH GARDENS, FLORIDA COUNTED BY: KEvin MCNALLY COUNTED in 10 minute intervals

Traffic Survey Specialists, Inc.
85 SE 4th Avenue, Unit 109
Delray Beach, Florida 33483
(561) 272-3255

Vehicle group 1

Traffic Survey Specialists, Inc.	
85 SE 4 th Avenue, Unit 109	Study Name: NB95N
Delray Beach, Florida 33483	Site Code $: 00160230$
$(561) 272-3255$	Start Date: $11 / 12 / 16$

NORTHBOUND I-95 NORTH OF NORTHLAKE BLVD
PALM BEACH GARDENS, FLORIDA
COUNTED BY: KEVIN MCNALLY COUNTED IN 10 MINUTE INTERVALS

| | \| NB 95 NORTH END |From North | | | \| A | | | \| NB 95 NORTH END | | | | | \| ${ }^{\text {a }}$ | | | \| Intvl. | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | From East | | | | \|From South | | | | From West | | | | | |
| Start | \mid GROUP | GROUP | GROUP | GROUP | | | | GROUP | | | | \| | | | | | |
| Time | 4 | 3 | 2 | $1]$ | Left | Thru | Right | 51 | Left | Thru | Right | Other | Left | Thru | Right | Other | Total |
| \% Apr. | 0.2 | 3.1 | 2.9 | 93.6 | - | - | - | 100.0 | - | - | - | - | - | - | - | - | |
| \% Int. | 0.2 | 3.1 | 2.9 | 93.5\| | - | - | - | - 1 | - | - | - | -1 | - | - | - | -1 | - |

(561) 272-3255

Vehicle group 1
|From East

SOUTHBOUND I-95 SOUTH OF NORTHLAKE BLVD
PALM BEACH GARDENS, FLORIDA
COUNTED BY: KEVIN MCNALLY
COUNTED IN 10 MINUTE INTERVALS

Traffic Survey Specialists, Inc.
85 SE 4th Avenue, Unit $109 \quad$ Study Name: SB95S
Delray Beach, Florida 33483 Site Code : 00160230
(561)272-3255

Vehicle group 1

Start Time	\|SB 95 SOUTH END\|From North			\|\| From East					\| SB 95 SOUTH END			From West				\| Intvl.	
	GROUP	GROUP	GROUP	GROUP				GROUP									
	4	3	2	$1)$	Left	Thru	Right	51	Left	Thru	Right	Other	Left	Thru	Right	Other	Total
11/12/16																	
18:05\|	0	17	8	5921	8	37	0	1 \|	0	0	0	$0 \mid$	0	0	0	01	618
18:10\|	4	31	12	5641	0		0	21	0	0	0	01	0	0	0	01	613
18:15\|	0	0	0	01	0	0	0	01	0	0	0	01	0	0	0	01	0
18:20\|	3	26	13	5731	s		0	01	0	0	0	$0 \mid$	0	0	- 0	$0 \mid$	615
18:25\|	1	20	8	4941	0		0	$1 \mid$	0	0	0	0		- 0	10	01	524
18:301	0	0	0	01	0		0	01	0	0	0	01	d		0	01	0
18:35\|	1	28	6	4641	8		0	$0 \mid$	0	0	0	0				$0 \mid$	499
18:40\|	3	19	10	458\|	0	0	0	이	0	0	0	01	0	0	0	01	490
18:45\|	0	0	0	0\|	0	0	0	01	0	0	0	$0 \mid$	0	0	0	01	0
18:50\|	0	0	0	01	0	0	0	01	0	0	0	01	0	0	0	01	0
18:55	0	0	0	01	0	0	0	01	0	0	0	01	0	0	0	0	0
Hour	12	141	57	3145\|	0	0	0	4 \|	0	0	0	$0 \mid$	0	0	0	$0 \mid$	3359
19:00\|	0	0	0	01	0	0	0	01	0	0	0	01	0	0	0	01	0
19:05\|	2	23	9	6201			0	1 \|	0	0	0	01	0	0	0	$0 \mid$	655
19:10\|	3	25	8	615	0	0	0	$1)$	0	0	0	0	0	0	0	01	652
19:15\|	0	0	0		0	0	0	01	0	0	0	01		7	1	01	0
19:20\|	0	26	5	5371		36	0	$3 \mid$	0	0	0	01	/		\%	01	571
19:25\|	1	22	7	575\|	0	0	0	$1 \mid$	0	0	0	$0 \mid$	0	0		01	606
19:30\|	0	0	0		0	0	0	01	0	0	0	01	0	0	0	01	0
19:35\|	1	30	13	6201	8:		0	$0 \mid$	0	0	0	0	0	0	0	0\|	664
19:40\|	3	21	16	5161	0	0	0	$1 \mid$	0	0	0	0	0	0	0	01	557
Total	22	288	115	6628\|	0	0	0	11\|	0	0	0	$0 \mid$	0	0	0	$0 \mid$	7064
\% Apr. \|	0.3	4.0	1.6	93.9\|	-	-	-	100.0\|	-	-	-	- \|	-	-	-	-1	-
\% Int. \|	0.3	4.0	1.6	93.8\|	-	-	-	0.11	-	-	-	-1	-	-	-	-1	-

SOUTHBOUND I-95 NORTH OF NORTHLAKE BLVD
PALM BEACH GARDENS, FLORIDA
Traffic Survey Specialists, Inc.
85 SE 4th Avenue, Unit 109
Delray Beach, Florida 33483
(561) 272-3255

Vehicle group 1


```
Traffic Survey Specialists, Inc.
```

Study Name: SB95N
Site Code : 00160230
Start Date: 11/12/16
Page : 2

SOUTHBOUND I-95 NORTH OF NORTHLAKE BLVD PALM BEACH GARDENS, FLORIDA
COUNTED BY: KEVIN MCNALLY
COUNTED IN 10 MINUTE INTERVALS

Vehicle group 1

\mid SB 95 NORTH END	\mid A	\mid SB 95 NORTH END	$\mid A$
\mid From North	\mid From East	\mid From South	\|From West

Traffic Survey Specialists, Inc.
EASTBOUND NORTHLAKE BLVD EAST OF I-95 PALM BEACH GARDENS, FLORIDA COUNTED BY: KEVIN MCNALLY COUNTED IN 10 MINUTE INTERVALS

Study Name: EBNLE
Site Code : 00160230
Start Date: 11/13/16
Page : 1

OCTOBER 25N, 2016

TRAFFIC DATA FOR NOISE STUDIES:

Federal Aid Number (s):
FPID Number (s):
State/Federal/ County Route No.:
Road Name:
Project Description:
Segment Description:
Section Number:
Mile Post:

TED
435803-1-22-02
SR 9
I-95
SR 9/I-95 at Northlake Boulevard Interchange PD\&E Study
1-95 from N of Blue Heron Blvd to S of Northlake Blvd 93220000 From $\quad 33.488$$\quad$ To 34.404

Notes

1. Design hour percentages typically assumed to be half of daily percentages
2. Classification data for T_{24} and $T_{\text {peak }}$ obtained from MLOU
3. Classification data for Medium Trucks (MT), Heavy Trucks (HT), Buses (B) and Motocycles (MC) obtained from FDOT Count site 932214

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:

Date:
8/18/2017

Page 1

TRAFFIC DATA FOR NOISE STUDIES:
Federal Aid Number (s):
FPID Numbers):
State/Federal/ County Route No.:
Road Name:
Project Description:
Segment Description:
Section Number:
Mile Post:

[^0]I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:

Date: \qquad

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis

TRAFFIC DATA FOR NOISE STUDIES:
Federal Aid Numbers):
FPID Number (s):
State/Federal/ County Route No.:
Road Name:
Project Description:
Segment Description:
Section Number:
Mile Post:

TAD
SR 9
I-95
SR 9/I-95 at Northlake Boulevard Interchange PD\&E Study
I-95 from N of Northlake Boulevard to PGA 93220000 From $\quad 34.730$$\quad$ To 36.520

Notes

1. Design hour percentages typically assumed to be half of daily percentages
2. Classification data for T_{24} and $T_{\text {peak }}$ obtained from MLOU
3. Classification data for Medium Trucks (MT), Heavy Trucks (HT), Buses (B) and Motorcycles (MC)
obtained from FDOT Count site 932214

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:

Date: \qquad

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis

FDOT Reviewer:

one $8 / 2 / 3 / 10$

Page 3

Federal Aid Numbers):
FPID Numbers):

TD
435803-1-22-02
CR 809A
Northlake Boulevard
SR 9/l-95 at Northlake Boulevard Interchange
Northlake Boulevard from Military Trail to Keating Drive
$93680000 \quad$ Military Trail \quad To \quad Seating Drive
From \quad.


```
Notes
1. Design hour percentages typically assumed to be half of daily percentages
2. Classification data for \(T_{24}\) and \(T_{\text {peak }}\) obtained from MLOU
3. Classification data for Medium Trucks (MT), Heavy Trucks (HT), Buses (B) and Motocycles (MC) obtained from FDOT Count site 935406
```

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:

Date: \qquad
8/18/2017

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis

FDOT Reviewer:

TRAFFIC DATA FOR NOISE STUDIES:

Federal Aid Number (s):
FPID Numbers):
State/Federal/ County Route No.:
Road Name:
Project Description:
Segment Description:
Section Number:
Mile Post:

TED
435803-1-22-02
CR 809A
Northlake Boulevard
SR 9/I-95 at Northlake Boulevard Interchange
Northlake Boulevard from Seating Drive to I-95
93680000
From \quad Keating Drive \quad To \quad I-95

Notes

1. Design hour percentages typically assumed to be half of daily percentages
2. Classification data for T_{24} and $T_{\text {peak }}$ obtained from MLOU
3. Classification data for Medium Trucks (MT), Heavy Trucks (HT), Buses (B) and Motocycles (MC)
obtained from FDOT Count site 935406

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:

Date:
8/18/2017

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis

FDOT Reviewer:

TRAFFIC DATA FOR NOISE STUDIES:

Federal Aid Number (s):
FPID Number (s):
State/Federal/ County Route No.:
Road Name:
Project Description:
Segment Description:
Section Number:
Mile Post:

TAD
435803-1-22-02
CR 809A
Northlake Boulevard
SR 9/I-95 at Northlake Boulevard Interchange
Northlake Boulevard Between I-95 NB \& SB Ramp Terminals 93680000 From \quad I-95 SB

Notes

1. Design hour percentages typically assumed to be half of daily percentages
2. Classification data for T_{24} and $T_{\text {peak }}$ obtained from MLOU
3. Classification data for Medium Trucks (MT), Heavy Trucks (HT), Buses (B) and Motocycles (MC)
obtained from FDOT Count site 935406

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.
Prepared By

Date:
8/18/2017

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis

FDOT Reviewer:

Date

TRAFFIC DATA FOR NOISE STUDIES:

Federal Aid Numbers):
FPID Number (s):
State/Federal/ County Route No.:
Road Name:
Project Description:
Segment Description:
Section Number:
Mile Post:

TED
435803-1-22-02
CR 809A
Northlake Boulevard
SR 9/I-95 at Northlake Boulevard Interchange
Northlake Boulevard from I-95 to Sunrise Drive
93680000
From \quad I-95

Notes

1. Design hour percentages typically assumed to be half of daily percentages
2. Classification data for T_{24} and $T_{\text {peak }}$ obtained from MLOU
3. Classification data for Medium Trucks (MT), Heavy Trucks (HT), Buses (B) and Motocycles (MC) obtained from FDOT Count site 935406

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:

Date: \qquad

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis

FDOT Reviewer:

Page 7

TRAFFIC DATA FOR NOISE STUDIES:

Federal Aid Number (s):
FPID Number (s):
State/Federal/ County Route No.:
Road Name:
Project Description:
Segment Description:
Section Number:
Mile Post:

TAD
$\frac{435803-1-22-02}{\text { SR } 9}$
I-95 Ramps to / from Northlake Boulevard
SR 9/I-95 at Northlake Boulevard Interchange I-95 Northbound On-Ramp from Northlake Boulevard 93220083 From Northlake B \quad To \quad I-95

Notes

1. LOS C Volumes for Ramps based on Uninterrupted Flow Highways Criteria
2. Design hour percentages typically assumed to be half of daily percentages
3. Classification data for T_{24} and $T_{\text {peak }}$ obtained from MLOU
4. Classification data for Medium Trucks (MT), Heavy Trucks (HT), Buses (B) and Motocycles (MC) obtained from existing traffic data

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:

Date: \qquad

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis

FDOT Reviewer:

TRAFFIC DATA FOR NOISE STUDIES:

Federal Aid Number(s):
FPID Number (s):
State/Federal/ County Route No.:
Road Name:
Project Description:
Segment Description:
Section Number:
Mile Post:

TB
435803-1-22-02
SR 9
l-95 Ramps to / from Northlake Boulevard
SR 9/I-95 at Northlake Boulevard Interchange
l-95 Northbound Off-Ramp to Northlake Boulevard
$93220082 \quad$ I-95
From \quad To \quad Northlake Boulevard

Notes

1. LOS C Volumes for Ramps based on Uninterrupted Flow Highways Criteria
2. Design hour percentages typically assumed to be half of daily percentages
3. Classification data for T_{24} and $T_{\text {peak }}$ obtained from MLOU
4. Classification data for Medium Trucks (MT), Heavy Trucks (HT), Buses (B) and Motocycles (MC) obtained from existing traffic data

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:

Date: \qquad
8/18/2017

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis

FDOT Reviewer:

Page 9

TRAFFIC DATA FOR NOISE STUDIES:

Federal Aid Numbers):
FPID Number (s):
State/Federal/ County Route No.:
Road Name:
Project Description:
Segment Description:
Section Number:
Mile Post:

Notes

1. LOS C Volumes for Ramps based on Uninterrupted Flow Highways Criteria
2. Design hour percentages typically assumed to be half of daily percentages
3. Classification data for T_{24} and $T_{\text {peak }}$ obtained from MLOU
4. Classification data for Medium Trucks (MT), Heavy Trucks (HT), Buses (B) and Motocycles (MC)
obtained from existing traffic data

I certify that the above information is accurate and appropriate for use with the traffic noise analysis,

Prepared By:

Date: \qquad

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis

FDOT Reviewer:

TRAFFIC DATA FOR NOISE STUDIES:
Federal Aid Number (s):
FPID Number (s):
State/Federal/ County Route No.:
Road Name:
Project Description:
Segment Description:
Section Number:
Mile Post:

TED
435803-1-22-02
SR 9
I-95 Ramps to / from Northlake Boulevard
SR 9/I-95 at Northlake Boulevard Interchange I-95 Southbound Off-Ramp to Northlake Boulevard 93220081 From \quad I-95

Notes

1. LOS C Volumes for Ramps based on Uninterrupted Flow Highways Criteria
2. Design hour percentages typically assumed to be half of daily percentages
3. Classification data for T_{24} and $T_{\text {peak }}$ obtained from MLOU
4. Classification data for Medium Trucks (MT), Heavy Trucks (HT), Buses (B) and Motocycles (MC)
obtained from existing traffic data

I certify that the above information is accurate and appropriate for use with the traffic noise analysis.

Prepared By:

Date:
$8 / 18 / 2017$

I have reviewed and concur that the above information is appropriate for use with the traffic noise analysis

FDOT Reviewer:

Page 11

ATTACHMENTS

PROJECT TRAFFIC FORECAST

Future Annual Average Daily Traffic (AADT) Forecasts

The AADT forecast volumes for this IMR Study was developed by FDOT District 4. The traffic forecasting methodology used for each intersection approach was based on the 2015 AADT (from field), and 2010 and 2040 SERPM 7.0 model volumes. The 2015 model volume was interpolated using 2010 and 2040 model volumes. Then the differences of 2015 AADT and interpolated 2015 forecasted AADT from model was calculated. The recommended 2040 AADT were calculated by applying this difference to the 2040 SERPM 7.0 model volumes. Then the 2020 and 2030 volumes were interpolated using 2015 AADT and recommended 2040 volumes. For the roadway segments where the SERPM 72040 model volumes are lower than the SERPM 72010 model volumes, or are not included in the SERPM 7 network, the future 2020, 2030, and 2040 AADTs were calculated using 2015 AADT and a compound growth factor of 0.5%. For all the roadway links, the 2015 and 2040 AADT has been compared, and a minimum compound growth rate of 0.5% has been adopted. The recommended future AADTs are provided in Attachment B.

Traffic Factors

Directional Distribution (D) and Daily Truck (T_{24}) factors were estimated from the average of the historical data from the FDOT stations and the existing machine counts obtained from the I-95 Interchange PD\&E Studies Traffic Data Collection \& Traffic Projections Report. The recommended K, D and T_{24} factors for the I-95 mainline, ramps and arterial segments are provided in the Table 1 below.

Table 1 Traffic Factors						
Roadway	K $^{(1)}$	$\mathrm{D}^{(2)}$	$\mathrm{T}_{24}{ }^{(3)}$	PHF ${ }^{(1)}$	MOCF	
I-95 Mainline	8.0%	56.9%	7.4%	0.95	N/A	
I-95 NB Ramps	9.0%	100%	7.1%	0.95	N/A	
I-95 SB Ramps	9.0%	100%	5.4%	0.95	N/A	
Northlake Blvd.	9.0%	56.6%	8.0%	0.95	N/A	
Military Trail	9.0%	56.3%	4.4%	0.95	N/A	
Sunrise Drive	9.0%	65.0%	4.3%	0.95	N/A	
Keating Drive	9.0%	55.4%	4.3%	0.95	N/A	

Sources:

1. Project Traffic Forecasting Handbook
2. Based on average from Traffic Counts Data Collected for PD\&E Study and FDOT Traffic online 2014
3. Traffic Counts Data Collected for PD\&E Study

Note that the D factors shown in Table 1 are different from the values from the MLOU for this study. This is due to the fact that the D Factors used in the MLOU was based on the existing traffic counts information. However, during the development and balancing the volumes along l-95 with the interchange ramp volumes it was necessary to adjust the D factors to be able to balance the volumes. The new

INTERRUPTED FLOW FACILITIES					
STATE SIGNALIZED ARTERIALS					
Class I (40 mph or higher posted speed limit)					
Lanes	Median	B	C	D	E
1	Undivided	*	830	880)
2	Divided	*	1,910	2,000	**
3	Divided	*	2,940	3,020	-
4	Divided	*	3,970	4,040)
Class II (35 mph or slower posted speed limit)					
Lanes	Median	B	C	D	E
1	Undivided	*	370	750) 800
2	Divided	*	730	1,630	1,700
3	Divided	*	1,170	2,520	- 2,560
4	Divided	*	1,610	3,390) 3,420
Non-State Signalized Roadway Adjustments (Alter corresponding state volumes by the indicated percent.)					
	Non-State	Signalized R	dways	10\%	
Median \& Turn Lane Adjustments					
		Exclusive	Exclu		Adjustment
Lanes	Median	Left Lanes	Right L		Factors
1	Divided	Yes	No		+5\%
1	Undivided	No	No		-20\%
Multi	Undivided	Yes	No		-5\%
Multi	Undivided	No	No		-25\%
-	-	-	Ye		+ 5\%

One-Way Facility Adjustment

Multiply the corresponding directional volumes in this table by 1.2

UNINTERRUPTED FLOW FACILITIES				
FREEWAYS				
Lanes	B	C	D	E
2	2,260	3,020	3,660	3,940
3	3,360	4,580	5,500	6,080
4	4,500	6,080	7,320	8,220
5	5,660	7,680	9,220	10,360
6	7,900	10,320	12,060	12,500
Freeway Adjustments				
	$\begin{gathered} \text { Auxiliary } \\ \text { Lane } \\ +1,000 \end{gathered}$		Ra Mete +5	

UNINTERRUPTED FLOW HIGHWAYS

Lanes	Median	B	C	D	E
1	Undivided	420	840	1,190	1,640
2	Divided	1,810	2,560	3,240	3,590
3	Divided	2,720	3,840	4,860	5,380

Uninterrupted Flow Highway Adjustments

Lanes	Median	Exclusive left lanes	Adjustment factors
1	Divided	Yes	$+5 \%$
Multi	Undivided	Yes	-5%
Multi	Undivided	No	-25%

${ }^{1}$ Values shown are presented as peak hour directional volumes for levels of service and are for the automobile/truck modes unless specifically stated. This table does not constitute a standard and should be used only for general planning applications. The computer models from which this table is derived should be used for more specific planning applications. The table and deriving computer models should not be used for corridor or intersection design, where more refined techniques exist. Calculations are based on planning applications of the Highway Capacity Manual and the Transit Capacity and Quality of Service Manual.
${ }^{2}$ Level of service for the bicycle and pedestrian modes in this table is based on number of motorized vehic les, not number of bic yclists or pedestrians using the facility.
${ }^{3}$ Buses per hour shown are only for the peak hour in the single direction of the higher traffic flow.

* Cannot be achieved using table input value defaults.
** Not applicable for that level of service letter grade. For the automobile mode, volumes greater than level of service D become F because intersection capacities have been reached. For the bic ycle mode, the level of service letter grade (including F) is not achievable because there is no maximum vehicle volume threshold using table input value defaults.

[^1]

Figure 3-7 Northlake Boulevard - 2015 Existing AADT Volumes

SR-9/I-95 at Northlake Boulevard Interchange PD\&E Study

Figure 3-10
Northlake Boulevard - 2015 Existing AM Peak Hour DDHV Volumes

Figure 3-13 Northlake Boulevard - 2015 Existing PM Peak Hour DDHV Volumes

Figure 4-5 Northlake Boulevard - 2040 Future AADT Volumes

SR-9/I-95 at Northlake Boulevard Interchange PD\&E Study

Figure 4-14 Northlake Boulevard - 2040 AM Peak Hour Future DDHV Volumes

Figure 4-17 Northlake Boulevard - 2040 PM Peak Hour Future DDHV Volumes

```
County: 93 - PALM BEACH
\begin{tabular}{cccc} 
Site Co Sec Sub & MilePost & Description \\
2203 & 93220000 & 26.764 & SR 9/I-95 -
\end{tabular}
2203 93220000 26.764 SR 9/I-95 - N OF BELVEDERE RD (COUNTY LINK: 3210)
```

Func. Class: 11 - Urban Principal Arterial -- Interstate
Survey Type: Portable Duration: 1 Days Annual Average Daily
Class 01 MOTORCYCLE
Class 02 CARS
Class 03 PICK-UPS AND VANS
lass 03 PICK-
Class 04 2-AXLE, SINGLE UNIT TRUCKS
Class 06 3-AXLE, SINGLE UNIT TRUCKS
Class 07 4-AXLE, SINGLE UNIT TRUCKS
Class 08 2-AXL TRCTR W/ 1 OR 2-AXL TRLR, 3-AXL TRCTR W/ 1-A
Class 09 3-AXLE TRACTOR W/ 2-AXLE TRLR
Class 10 3-AXLE TRACTOR W/ 3-AXLE TRLE
Class 11 5-AXLE MULTI-TRLR
Class 12 6-AXLE MULTI-TRLR
Class 13 ANY 7 OR MORE AXLE
Class 14 NOT USED
$\begin{array}{ll}\text { Class } 14 & \text { NOT US } \\ \text { Class } 15 & \text { OTHER }\end{array}$

Site Co Sec Sub MilePost Description
22149322000038.120 SR 9/I-95-N OF MILITARY TRL \& PGA BLVD (COUNTY L
Func. Class: 11 - Urban Principal Arterial -- Interstate
$\begin{array}{lc}\text { Func. Class: } 11 \text { - Urban Principal Arterial -- Interstate } \\ \text { Survey Type: Portable } & \text { Duration: Days Annual Average Daily }\end{array}$
Class 01 MOTORCYCLES
Class 02 CARS
Class 03 PICK-UPS AND VANS
Class 04 BUSES
Class 05 2-AXLE, SINGLE UNIT TRUCKS
Class 06 3-AXLE, SINGLE UNIT TRUCKS
Class 07 4-AXLE, SINGLE UNIT TRUCK
Class 08 2-AXL TRCTR W/ 1 OR 2-AXL TRLR, 3-AXL TRCTR W/ 1-A
Class 08 2-AXL TRCTR W/ 1 OR 2-AXL TRL
Cle 10 -AXLE TRACTOR W/ 2-AXLE TRLE
Class 11 5-AXLE MULTI-TRL
class 11 -AXLE MULTI-TRLR
Class 12 -AXLE MULTI-TRLR
Class 13 ANY 7 OR MORE AXLE
Clast MULT-TRLR
Ias
Class 14 NOT USED
Class 15 OTHER

Annual	
Volume	
212	AverageDaily
86343	0.19
16795	76.07
349	14.80
2507	0.31
420	2.21
148	0.37
1971	0.13
3633	1.74
46	3.20
106	0.04
68	0.09
3	0.06
0	0.00
900	0.00
A	0.79
-------	-----
\#\#\#\#\#	100.00

Classes: Passenger Vehicles 01-03, Truck \& Buses 04-13, Trucks 05-13, Medium Trucks 04-05, Heavy Trucks 06-13

Classes: Passenger Vehicles 01-03, Truck \& Buses 04-13, Trucks 05-13, Medium Trucks 04-05, Heavy Trucks 06-13

County:	93
Station:	3231
Description:	I-95 SB OFF RAMP TO NORTHLAKE BLVD
Start Date:	$03 / 24 / 2015$
Start Time:	0000

Time	Direction: S				
	1st	2nd	3rd	4th	Total
0000	41	38	37	11	127
0100	15	19	10	11	55
0200	9	10	15	22	56
0300	9	10	12	9	40
0400	9	12	13	20	54
0500	19	24	35	56	134
0600	49	86	108	141	384
0700	149	177	174	295	795
0800	226	232	195	229	882
0900	162	177	187	185	711
1000	155	186	194	200	735
1100	161	169	216	220	766
1200	194	206	211	196	807
1300	202	189	183	212	786
1400	238	215	238	219	910
1500	208	272	162	185	827
1600	216	257	232	233	938
1700	260	239	195	223	917
1800	201	197	201	213	812
1900	172	140	144	131	587
2000	130	118	104	114	466
2100	114	109	82	72	377
2200	80	63	56	51	250
2300	41	46	34	22	143
24-Ho	Total				12559

Peak Volume Information

	Hour	Volume
A.M.	745	948
P.M.	1615	982
Daily	1615	982

Truck Percentage 4.32 NaN 4.32

Classification Summary Database

Dir	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S TotTrk	TotVol														
S	41	10157	1818	42	257	79	43	74	45	1	2	0	0	0	0

Generated by SPS 5.0.45P

County:	93
Station:	3231
Description:	I-95 SB OFF RAMP TO NORTHLAKE BLVD
Start Date:	$03 / 25 / 2015$
Start Time:	0000

Peak Volume Information

	Hour	Volume
A.M.	745	865
P.M.	1630	950
Daily	1630	950

$\begin{array}{lll}\text { Truck Percentage } 4.38 & \text { NaN } 38\end{array}$

Classification Summary Database

Dir	1	2	3	4	5	6	7	8	9	10	11	12	13
S	54	10411	1723	38	214	130	32	76	64	4	0	0	0

Generated by SPS 5.0.45P

County:	93
Station:	3231
Description:	I-95 SB OFF RAMP TO NORTHLAKE BLVD
Start Date:	$03 / 26 / 2015$
Start Time:	0000

Time	1st	Direction: S			
		2nd	3rd	4th	Total
0000	27	28	20	9	84
0100	14	12	15	8	49
0200	8	5	5	7	25
0300	7	7	9	12	35
0400	2	11	13	16	42
0500	15	29	29	43	116
0600	64	87	114	117	382
0700	143	154	189	236	722
0800	225	213	191	254	883
0900	205	175	204	188	772
1000	212	200	191	200	803
1100	193	205	198	215	811
1200	239	217	193	210	859
1300	189	214	205	212	820
1400	233	208	227	219	887
1500	237	246	198	228	909
1600	186	220	202	210	818
1700	254	255	220	237	966
1800	204	216	170	184	774
1900	160	144	154	120	578
2000	127	154	118	115	514
2100	101	133	85	79	398
2200	87	65	61	67	280
2300	58	59	50	51	218
24-H	Total				12745

Peak Volume Information

	Hour	Volume
A.M.	800	883
P.M.	1700	966
Daily	1700	966

$\begin{array}{lrl}\text { Truck Percentage } 4.56 & \text { NaN } 56\end{array}$

Classification Summary Database

Dir	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S TotTrk	TotVol														
S	57	10429	1678	40	198	153	47	78	57	7	0	1	0	0	0

Generated by SPS 5.0.45P

County:	93
Station:	3235
Description:	I-95 SB ON RAMP FROM NORTHLAKE BLVD
Start Date:	$03 / 24 / 2015$
Start Time:	0000

Time	1st	Direction: S			Total
		2nd	3rd	4th	
0000	37	37	27	21	122
0100	20	17	18	14	69
0200	14	11	10	15	50
0300	13	14	12	16	55
0400	12	15	22	38	87
0500	27	59	58	87	231
0600	102	143	184	245	674
0700	291	339	353	383	1366
0800	346	320	316	260	1242
0900	236	241	262	234	973
1000	203	217	260	243	923
1100	241	217	252	250	960
1200	233	283	276	266	1058
1300	310	270	255	291	1126
1400	279	261	302	277	1119
1500	284	291	322	279	1176
1600	299	332	302	336	1269
1700	377	372	380	328	1457
1800	331	260	233	228	1052
1900	232	212	214	177	835
2000	184	170	170	163	687
2100	154	125	111	99	489
2200	102	97	81	70	350
2300	54	32	42	41	169

24-Hour Totals: 17539

Peak Volume Information

	Hour	Volume
A.M.	715	1421
P.M.	1645	1465
Daily	1645	1465

Truck Percentage 6.01 NaN 6.01

Classification Summary Database

Dir	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	TotTrk
S TotVol																
S	47	13064	3374	54	424	250	121	109	77	17	2	0	0	0	0	1054
17539																

Generated by SPS 5.0.45P

County:	93
Station:	3235
Description:	I-95 SB ON RAMP FROM NORTHLAKE BLVD
Start Date:	$03 / 25 / 2015$
Start Time:	0000

Time	1st	Direction: S			Total
		2nd	3rd	4th	
0000	38	35	15	20	108
0100	15	14	14	13	56
0200	14	18	9	9	50
0300	10	13	14	9	46
0400	17	26	29	29	101
0500	30	52	56	75	213
0600	79	138	150	160	527
0700	232	270	297	312	1111
0800	316	256	295	256	1123
0900	220	208	230	242	900
1000	224	260	228	201	913
1100	231	251	235	248	965
1200	249	265	259	254	1027
1300	282	260	257	245	1044
1400	238	284	281	269	1072
1500	281	276	282	272	1111
1600	275	320	304	317	1216
1700	343	333	323	298	1297
1800	323	280	248	232	1083
1900	223	191	188	187	789
2000	168	149	162	148	627
2100	135	130	120	108	493
2200	128	98	85	72	383
2300	63	39	42	43	187

24-Hour Totals: 16442

Peak Volume Information

	Hour	Volume		
A.M.	715	1195		
P.M.	1645	1316		
Daily	1645	1316	NaN	
		6.69		

Classification Summary Database

Dir	1	2	3	4	5	6	7	8	9	10	11	12	13	14
S	63	12143	3136	53	379	355	79	99	93	38	2	2	0	0

Generated by SPS 5.0.45P

County:	93
Station:	3235
Description:	I-95 SB ON RAMP FROM NORTHLAKE BLVD
Start Date:	$03 / 26 / 2015$
Start Time:	0000

Peak Volume Information

	Hour	Volume
A.M.	715	1191
P.M.	1700	1341
Daily	1700	1341

Truck Percentage 6.55 NaN 6.55

Classification Summary Database

Dir	1	2	3	4	5	6	7	8	9	10	11	12	13	14
S	83	12367	3096	41	299	431	83	73	111	49	0	3	0	0

Generated by SPS 5.0.45P

County:	93
Station:	3241
Description:	I-95 NB ON RAMP FROM NORTHLAKE BLVD
Start Date:	$03 / 24 / 2015$
Start Time:	0000

Time	1st	Direction: N			
		2nd	3rd	4th	Total
0000	40	42	41	26	149
0100	34	22	19	21	96
0200	24	18	16	16	74
0300	8	14	12	13	47
0400	8	14	18	16	56
0500	17	25	43	50	135
0600	47	51	82	151	331
0700	101	166	153	389	809
0800	330	390	339	345	1404
0900	266	268	259	255	1048
1000	245	238	251	276	1010
1100	260	265	260	317	1102
1200	303	287	297	321	1208
1300	295	295	297	328	1215
1400	279	328	322	371	1300
1500	325	348	346	409	1428
1600	402	430	380	436	1648
1700	427	467	364	375	1633
1800	293	366	310	278	1247
1900	242	188	194	175	799
2000	166	143	130	105	544
2100	99	115	94	105	413
2200	86	66	88	53	293
2300	61	44	38	45	188

24-Hour Totals: 18177

Peak Volume Information

	Hour	Volume
A.M.	745	1448
P.M.	1630	1710
Daily	1630	1710

Truck Percentage $6.77 \quad$ NaN $\mathbf{6 . 7 7}$

Classification Summary Database

Dir	1	2	3	4	5	6	7	8	9	10	11	12	13	14
N	106	14616	2224	44	295	711	57	39	51	34	0	0	0	0

Generated by SPS 5.0.45P

County:	93
Station:	3241
Description:	I-95 NB ON RAMP FROM NORTHLAKE BLVD
Start Date:	$03 / 25 / 2015$
Start Time:	0000

Time	1st	Direction: N			
		2nd	3rd	4th	Total
0000	40	41	21	21	123
0100	19	19	14	9	61
0200	15	19	6	11	51
0300	10	14	11	9	44
0400	11	7	13	22	53
0500	23	23	35	73	154
0600	42	71	69	114	296
0700	148	181	214	217	760
0800	224	321	266	198	1009
0900	181	161	163	232	737
1000	190	208	229	295	922
1100	268	320	306	281	1175
1200	314	299	353	319	1285
1300	280	265	287	357	1189
1400	290	321	333	333	1277
1500	284	325	391	393	1393
1600	380	360	366	373	1479
1700	404	418	450	348	1620
1800	368	290	261	195	1114
1900	190	203	162	202	757
2000	155	145	130	113	543
2100	113	118	118	93	442
2200	89	75	78	70	312
2300	68	54	48	45	215
24-H	Total				17011

	Hour	Volume
A.M.	745	1028
P.M.	1645	1645
Daily	1645	1645

Classification Summary Database

Dir	1	2	3	4	5	6	7	8	9	10	11	12	13	14
N	136	13776	1896	33	264	726	41	36	47	50	0	6	0	0

Generated by SPS 5.0.45P

County:	93
Station:	3241
Description:	I-95 NB ON RAMP FROM NORTHLAKE BLVD
Start Date:	$03 / 26 / 2015$
Start Time:	0000

 Peak Volume Information

	Hour	Volume
A.M.	800	980
P.M.	1615	1529
Daily	1615	1529

Truck Percentage 7.31 NaN -1
Classification Summary Database

Dir	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
N	207	12814	1866	38	258	705	51	20	37	55	0	10	0	0	0

Generated by SPS 5.0.45P

County:	93
Station:	3245
Description:	I-95 NB OFF RAMP TO NORTHLAKE BLVD
Start Date:	$03 / 24 / 2015$
Start Time:	0000

Peak Volume Information

	Hour	Volume
A.M.	730	900
P.M.	1645	1156
Daily	1645	1156

Truck Percentage 7.37 NaN 7.37

Classification Summary Database

Dir	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
N	19	8744	3870	70	723	35	42	72	62	1	0	0	0	0	0

Generated by SPS 5.0.45P

County:	93
Station:	3245
Description:	I-95 NB OFF RAMP TO NORTHLAKE BLVD
Start Date:	$03 / 25 / 2015$
Start Time:	0000

Time	1st	Direction: N			
0000	23	13	15	7	58
0100	9	11	7	7	34
0200	5	10	6	11	32
0300	4	8	6	7	25
0400	9	6	16	23	54
0500	29	23	41	47	140
0600	59	71	122	146	398
0700	173	207	280	251	911
0800	234	272	231	217	954
0900	191	154	134	167	646
1000	134	183	230	186	733
1100	198	230	228	233	889
1200	230	242	246	210	928
1300	232	215	232	234	913
1400	191	232	202	253	878
1500	231	249	291	265	1036
1600	277	273	286	308	1144
1700	305	293	285	257	1140
1800	242	264	235	190	931
1900	185	189	168	163	705
2000	170	145	125	126	566
2100	148	117	85	66	416
2200	57	47	40	39	183
2300	32	26	21	27	106
24-Ho	Total				13820

Peak Volume Information

	Hour	Volume
A.M.	730	1037
P.M.	1630	1192
Daily	1630	1192

Generated by SPS 5.0.45P

County:	93
Station:	3245
Description:	I-95 NB OFF RAMP TO NORTHLAKE BLVD
Start Date:	$03 / 26 / 2015$
Start Time:	0000

Peak Volume Information

	Hour	Volume
A.M.	730	996
P.M.	1645	1207
Daily	1645	1207

Classification Summary Database

Dir	1	2	3	4	5	6	7	8	9	10	11	12	13
N	16	8433	4003	60	725	57	26	93	66	0	0	0	0

Generated by SPS 5.0.45P

Appendix B

Field Monitoring

Measurements Taken By: \qquad Brian Cummings \qquad oct 25,2016

Time Study Started: \qquad 7: il $\mathrm{an}-7: \mathrm{zlam}_{\mathrm{an}}$, $7: 2 z_{\mathrm{zan}}-7: 32 \mathrm{zin}, 7: 33 \mathrm{am}$ Time Study Ended: $7: 43 \mathrm{am}$
Project Identification: 25971 - Northlake Blvd. PD\&E Study
\qquad
\qquad
Site Identification: Site \# 1
Garden Lodge No. 360 F. \& A.M. 9463 ROAN LANE Palm Beach Gardens, FL 33403

Weather Conditions:

Sky: Clear \qquad
Temperature: \qquad

Partly Cloudy \qquad
Wind Speed 2-4 mph

Cloudy \qquad
Wind Direction \qquad

Other \qquad
Humidity \qquad 68.2

Equipment:
Sound Level Meter:
Type: \qquad Quest Sound Pro 2 Serial Number: \qquad BIIO90019
Did you check the battery? Yes V
Calibration Reading: Start 114.0
Response Settings:
Weighting:
No \qquad
End 114.0
Slow \qquad
Other (identify) \qquad

Calibrator:
Type: \qquad
Serial Number: \qquad QIIO90102

Did you check the battery? \qquad No \qquad
Data File Numbers: \qquad
\qquad
\qquad

LAX \qquad LE

L10 \qquad L50 \qquad 190 \qquad
\qquad Other
Background Noise: 3 min into run ${ }^{1}$ train whistle, 7 min into ruin bird chatter
Major Sources: \qquad Train, birds, I-95
Unusual Events: \qquad $\begin{array}{ll}\text { I-95 NB } 70 \mathrm{mph}, \text { I-95 5B 73 MPH } & \text { Northlake Limit } \\ \text { : Northlake WB } 35 \text { MPits } 25 \mathrm{~EB} & \text { Posted Speed Limit }\end{array}$ \qquad MPH
Other Notes: Actual speeds clocked: Nothixe wi 3 MPH, 25 ER
\qquad E

Picture \qquad Looking \qquad W
SKETCH

Measurements Taken By: Brian Cummings
Date: \qquad oct, 25,20160
Time Study Started: \qquad

Project Identification: \qquad 25971 - Northlake BlVd. PD\&E Study
\qquad
\qquad
Site Identification: \qquad
Covenant Centre International/Gardens School of Technology Arts 9153 Roan Lane Palm Beach Gardens, FL 33403

Weather Conditions:
Sky: Clear \qquad
Temperature: \qquad 75°

Partly Cloudy \qquad
Wind Speed \qquad

Cloudy \qquad
Wind Direction \qquad

Other \qquad
Humidity \qquad 69.3

Equipment:
Sound Level Meter:
Type: \qquad Serial Number: \qquad BIIO90019
Did you check the battery?

No \qquad
Calibration Reading:
Start 114.0
Response Settings:
Weighting:
End \qquad 114.0

Slow \qquad
Other (identify) \qquad
Calibrator:
Type: \qquad Did you check the battery? \qquad \checkmark - \qquad
\qquad
\qquad
\qquad

LAX \qquad LEO \qquad L10 \qquad LL \qquad 190 \qquad L95 \qquad Other
Background Noise:
Major Sources: \qquad $I-95$

Unusual Events: \qquad
Other Notes: Actual Clocked Speeds: Northlizke WB 35 MPH , ER 25 MPH Post ed Speed Limit \qquad
Picture \qquad 5 Looking \qquad Picture (C) Looking \qquad 5

Picture \qquad 7 Looking \qquad E Picture 8 Looking \qquad
SKETCH

I - 95 Northlake Northbound Plain
$\longrightarrow \operatorname{coc} \times \infty \times$ chain \times 备k fence

NOISE MEASUREMENT DATA SHEET
Measurements Taken By: Brian Cummings
Date: \qquad Oct 25,2016
Time Study Started: ${ }^{\varepsilon}$ \qquad :31am-8: 41am, 8:47am-8:57ain, 8:57-9:07 am Time Study Ended: \qquad 9:07 AM
\qquad
Project Identification:
\qquad
Site Identification: \qquad Sandtree (Playground) Near $5 i 6$ Sandtree Drive Palm Beach Gerdens, FL 33403

Weather Conditions:
Sky: Clear \qquad
Temperature: \qquad 76°

Partly Cloudy \qquad
Wind Speed \qquad

Cloudy \qquad Other \qquad
Wind Direction \qquad
\qquad

Equipment:
Sound Level Meter:
Type: \qquad Quest Sound Pro 2 \qquad BIIO90019
Did you check the battery?
 No \qquad
$\begin{array}{ll}\text { Calibration Reading: } & \text { Start } 114.0 \\ \text { Response Settings: } & \text { Fast } \\ \text { Weighting: } & \text { A. }\end{array}$
End \qquad 114.0

Slow \qquad
Other (identify) \qquad
Calibrator:
Type: \qquad Quest $Q C-10114 \mathrm{db}-1000 \mathrm{H}$ Did you check the battery?

\qquad
Data File Numbers: \qquad
\qquad
\qquad

RESULTS
LMAX \qquad LEO \qquad L10 \qquad L50 \qquad 190 \qquad L95 \qquad Other \qquad
Background Noise:
Major Sources: \qquad $I-95$

Unusual Events: \qquad Northliake 65-7I-95
Other Notes: Actual speed Clocked: Northlake WB $35 \mathrm{MPH}, 25 \mathrm{~EB}$
Picture \qquad Looking \qquad N Picture \qquad Looking \qquad 5 Picture II Looking \qquad E

Picture \qquad Looking \qquad
SKETCH

Measurements Taken By: Brian Cummings Date: \qquad oct. il, Rollo
Time Study Started: \qquad Time Study Ended: \qquad
Project Identification: \qquad 25971 - Northlake BlVd. PD\&E Study
\qquad
Site Identification: \qquad 9519 Birmingham Drive
\qquad

Weather Conditions:

Sky:
Clear \qquad Partly Cloudy
Temperature: \qquad
Cloudy \qquad Other \qquad
Wind Direction \qquad $W-N W$ \qquad 59.6

Equipment:
Sound Level Meter:
Type: \qquad Quest Sound Pro 2

Serial Number: \qquad BIIO90019
Did you check the battery?

Calibration Reading: Start 114.0
Response Settings:
Fast

Weighting:

No \qquad
End \qquad 114.0

Slow \qquad
Other (identify) \qquad

Calibrator:
Type: \qquad Quest QC-10 $114 d b-1000 H$
Did you check the battery? \qquad
\qquad No \qquad
Data File Numbers: \qquad
\qquad

LAX \qquad LEO \qquad L10 \qquad L50 \qquad 190 \qquad
\qquad Other \qquad
Background Noise: \qquad bird chatter (black birds)
Major Sources: I-95 South bound
Unusual Events: min into lIst Run car door slammed
\qquad
Picture \qquad 13 Looking \qquad Picture 14 Looking \qquad 5 Picture \qquad 15 Looking \qquad E Picture 16 Looking \qquad
SKETCH

Measurements Taken By: \qquad Brian Cummings Date: \qquad oct. 26,20160
Time Study Started: 7:45-7:55am,7:55:2m-8:05am, 8:05:3m-8:15 Time Study Ended: \qquad
Project Identification: \qquad 25971 - Northlake BlVd. PD\&E Study
\qquad
\qquad
Site Identification: \qquad 9141 Birmingham Drive
\qquad

Weather Conditions:
Sky: Clear \qquad
\qquad
Temperature: 77°

Partly Cloudy

Cloudy \qquad
Wind Direction \qquad

Other \qquad
Wind Speed $2-4 \mathrm{mph}$

Equipment:
Sound Level Meter:
Type: \qquad Quest Sound Pro 2

Serial Number: \qquad BIIO90019
Did you check the battery?

Calibration Reading: Start 114.0
Response Settings:

No \qquad
End 114.0
Slow \qquad
Other (identify) \qquad
Calibrator:
Type: \qquad Quest QC-10 $114 \mathrm{db}-1000 \mathrm{~Hz}$

Serial Number: \qquad QIIO90102

Did you check the battery? No \qquad
Data File Numbers: \qquad

\qquad
\qquad

LAX \qquad
\qquad L50 \qquad 190 \qquad L95
Other
Background Noise:
Major Sources: \qquad I-95 southbound

Unusual Events: \qquad
 Picture 17 Looking \qquad Picture \qquad 18 Looking \qquad S

Picture \qquad 19 Looking \qquad Picture \qquad 20 Looking \qquad
SKETCH

Measurements Taken By: \qquad Brian Cummings Date: \qquad OCt. 26,20160

Project Identification: \qquad
\qquad
\qquad
Site Identification: \qquad
867940 th Terrace N (Vacant Lot)

Weather Conditions:
Sky: Clear \qquad Partly Cloudy \qquad
Temperature: \qquad 78° \qquad
Cloudy \qquad Other \qquad
Wind Direction \qquad
\qquad 61.8

Equipment:
Sound Level Meter:
Type: \qquad Quest Sound Pro 2

Serial Number: \qquad BIIO90019
Did you check the battery?
 No \qquad
$\begin{array}{ll}\text { Calibration Reading: } & \text { Start } 114.0 \\ \text { Response Settings: } & \text { Fast } \\ \text { Weighting: } & \text { A }\end{array}$
End \qquad 114.0

Slow \qquad
Other (identify) \qquad
Calibrator:
Type: \qquad
Serial Number: \qquad QIIO90102 Did you check the battery? No \qquad
\qquad
\qquad
\qquad

LAX \qquad LEO \qquad L10 \qquad L50 \qquad 190 \qquad 195 \qquad Other \qquad
Background Noise:
Major Sources: \qquad I- 95 Southbound

Unusual Events: \qquad

Picture \qquad 21 Looking \qquad N Picture 22 Looking \qquad Picture \qquad Looking E Picture 24 Looking \qquad W

SKETCH

Appendix C

Conceptual Plans with Receptors

Appendix D

TNM Modeling Files

[^0]: Notes

 1. Design hour percentages typically assumed to be half of daily percentages
 2. Classification data for T_{24} and $T_{\text {peak }}$ obtained from MLOU
 3. Classification data for Medium Trucks (MT), Heavy Trucks (HT), Buses (B) and Motorcycles (MC)
 obtained from FDOT Count site 932214
[^1]: Source
 Florida Department of Transportation
 Systems Planning Office
 www.dot.state.fl.us/planning/systems $/ \mathrm{sm} / \mathrm{los} /$ default.shtm

